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Models of Inclination Shallowing During Sediment Compaction 

PORDUR ARASON AND SHAUL LEVI 

Geophysics, College of Oceanography, Oregon State University, Corvallis 

We construct microscopic models of compacting sediment which lead to inclination shallowing of the 
magnetic remanence. The models can be classified as (1) rotation of elongated magnetic grains to more 
horizontal orientations; (2) rotation toward the horizontal of flat nonmagnetic fabric grains to which smaller 
magnetic grains are attached; (3) randomization of the sediment by grain rotations which lead to decreased 
intensity of magnetization and possibly also to inclination shallowing; and (4) finally, we show that the initial 
within-sample dispersion of the magnetic moments dampens the amount of inclination shallowing of all the 
models and transforms any form of microscopic mechanism to an equation of a standardized form. The 
physically realistic models give rise to different magnitudes of inclination shallowing, which to the first order 
obey an equation of the form tan ( I - A/) = ( 1 - a AV ) tan I, where I is the inclination of the ambient field, 
AI is the inclination shallowing and AV the compaction. For these models we also calculate the effect of 
compaction on the intensity of magnetization, and the results show that considerable randomization is needed to 
offset the increased intensity due to higher concentrations of magnetic particles caused by compaction. If 
random rotations of the grains are biased toward rolling about horizontal axes and the randomization is sufficient 
to cancel the effect of greater concentrations, then the random grain rolling due to the compaction would give 
rise to considerable inclination shallowing. 

INTRODUCHON 

Anomalous shallowing of the magnetic inclination with depth 
in deep-sea sediments has been noted in several studies, and it has 
been suggested that the observed shallowing is due to compaction 
of the sediment [e.g., Morgan, 1979; Kent and Spariosu, 1982; 
Tauxe et al., 1984]. The inclination shallowing has been 
associated quantitatively with the sediment porosity in clays from 
the Northwest Pacific ocean [Arason and Levi, 1986] and in 
carbonates from the North Atlantic ocean [Celaya and Clement, 
1988]. Furthermore, laboratory experiments have demonstrated 
that compaction of sediment can lead to inclination shallowing in 
redeposition of natural deep-sea silty clays [Blow and Hamilton, 
1978] and in synthetic sediment composed of kaolinite and 
magnetite [Anson and Kodama, 1987]. Vetosub [1977] reviewed 
the important processes in the magnetization of sediments. 

The probable occurrence of inclination shallowing in some 
sediments is of great significance and concern for paleomagnetism 
with respect to the tectonic and geomagnetic interpretations of 
remanent magnetism. North-south translations of plates, 
microplates, and terrains as well as tilting of blocks are deduced 
from remanent inclinations of sediments. Alternatively, 
information about the paleomagnetic field, such as the correctness 
of the geocentric axial dipole hypothesis, and secular variation 
including polarity transitions have been derived from sediments. 
In all these applications it is assumed that sedimentary processes 
such as compaction do not alter the primary remanence direction. 
The development (circa 1978) of the Hydraulic Piston Coring 
system for the Deep Sea Drilling Project (DSDP) and subsequently 
Ocean Drilling Program (ODP) provides means of obtaining 
undisturbed marine sedimentary sections of up to 200 m in length, 
at present, with good global coverage. To be able to utilize fully 
this growing body of data, it is crucial to understand and account 
for compaction-related effects on the remanent magnetism in 
sediments. 
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Available models that predict shallowing of the magnetic 
inclination due to sediment compaction were derived intuitively 
and by analogy with mechanisms for inclination shallowing in 
noncompacting environments, and they were designed to fit 
specific observations, but they lack physical rigor. The detailed 
behavior of reinanent magnetism in compacting environments is 
complex and probably never fully known. It would therefore be 
valuable to be able to simulate the compaction effects on remanent 
magnetism with a simple model(s). We present here simple but 
physically plausible mechanical models that cause inclination 
shallowing during compaction. For the proposed microscopic 
mechanisms we derive exact mathematical expressions which relate 
the inclination shallowing to sediment compaction. 

DEFINITIONS 

The terms inclination shallowing and compaction will be used 
extensively in this paper, so a brief description of them is 
appropriate. 

Inclination Shallowing 

Inclination shallowing, A/, is taken as the difference between 
the initial magnetic inclination and the inclination after 
compaction. Inclination changes toward lower absolute values 
(more horizontal) are taken as positive inclination shallowing. In 
this article we only consider positive inclinations, but due to 
symmetry the conclusions are fully valid for negative inclinations. 
However, the equations may have some ambiguity concerning 
negative inclinations, due to the way inclination shallowing is 
defined with use of absolute values. The inclination shallowing is 
sometimes called inclination error, and, its negative value, 
inclination anomaly. 

Compaction 

As a measure of the degree of compaction, we choose the 
change in the normalized volume, AV. The initial volume of a 
sample is V = 1 with AV = 0; later, the volume decreases to 
V- ( 1 - AV ) for an arbitrary compaction AV. In squeezing a 
sample it is assumed that only the pore fluid is taken out of the 
sample, decreasing its porosity. The compaction AV is closely 
related to the settlement, Ah, a term commonly used in soil 
mechanics, where a sediment of initial thickness h decreases 
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(settles) by Ah upon compaction, AV = Ah / h [e.g., Hamilton, 
1959, p. 1424; Tschebotarioff, 1951, p. 105; Tomlinson, 1980, p. 
135]. The compaction is related to the sediment porosity, •p, by 

average. By taking into account that initial dispersions affect the 
horizontal grains more, since there is a weaker aligning force 
(cos/), he obtained the expression 

4>0 - AV 
4> = (1) 

1 - AV 

where 4>o is the initial porosity (porosity of 80% enters the 
equation as 0.80). From the data of Nobes et al. [1986] we 
estimate the compaction in natural clay-rich sediments to be 
AV--0.1 at 50-100 m subbottom depth, AV --0.3 at 200- 
400 m depth and AV -- 0.5 for 500-1500 m depth. Therefore we 
are mainly interested in compaction values between 0 and 0.5. 
Changes in porosity with compaction from equation (1) are shown 
in Figure 1 for various initial porosities. We note that the 
relationship is quite smooth and close to linear for the lower 
compaction values. 

PREVIOUSLY PUBLISHED MODELS 

Several models have been proposed to explain observed 
inclination shallowing, and we shall describe those relevant for 
this study. We refer to the models by the initials of their 
author(s). For the purpose of easy comparisons we have changed 
the symbols of some variables in the quoted references. The 
correct field inclination is denoted by I, and the observed 
inclination by ( I- A/), where A/is the inclination shallowing. 

Noncompactin g Environment 

For historical reasons we begin by describing two early models 
that predict inclination shallowing in noncompacting 
environments: first, the model by King [1955], which has 
influenced later models for compacting environments, and second, 
a model by Griffiths et al. [1960], which has been adapted for 
compaction in this study. 

Model K. From redeposition studies of glacial sediments, 
King [1955] proposed a model to explain the observed inclination 
shallowing. He assumed two types of magnetic carriers: (1) a 
fractionfi• of platelike grains, magnetized parallel to their flat side, 
which would be lain down horizontally on contact at the sediment 
interface with zero inclination, and (2) a fraction ( 1 -fi• ) of 
spherical grains that accurately record the field inclination on 

tan ( I- A/) = ( 1 -fi• ) tan I 

[King, 1955, equation 5, p. 123]. His observations suggested that 
fi• -- 0.6. This model has influenced several later models for 
inclination shallowing. Nagata [1962] criticized King for 
assuming the alignment to be proportional to the field strength, 
and he adjusted the equation to include strong alignment of 
individual grains, when the net moment is not proportional to the 
external field strength. However, we believe that King's argument 
is fully justified for geomagnetic field strengths, as will be 
discussed later. 

Model GKRW. Griffiths et al. [1960] noted that sediment can 
usually not be clearly divided into well-contrasted groups of 
spherical and platelike particles, as required by model K. They 
were primarily interested in mechanisms at the sediment-water 
interface, which produce inclination shallowing. One of their 
models deals with rolling magnetized spheres into adjacent holes. 
The azimuth of the direction to the holes is random, but all the 
particles rotate about horizontal axes. 

Consider first an example of four spheres, that prior to 
rotation, faithfully recorded the field direction, say, inclination I 
and declination zero. Now let these four particles rotate through an 
angle A0, one toward north, one south, one east, and one west. 
For the northward and southward rotations, the declinations are 
unaffected and the changes of inclination will cancel. For the 
eastward and westward rotations the declination changes will 
cancel, but both the eastward and westward rotations will result in 
a shallowed inclination. The resultant direction of these four 

grains, after rotation, will preserve the declination but give 
shallow inclination. 

Griffiths et al. [1960] solved this problem explicitly, starting 
with an ensemble where all the grains have initially an identical 
magnetic unit vector m = ( cos I, 0, sin I ). They obtained an 
exact expression for this vector after rotation through an angle A0, 
about a horizontal axis with the azimuth 2,. By integrating 
through all possible horizontal azimuthal directions 2, they found 
that the average magnetic vector after rotation is 
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Fig. 1. Sediment porosity q (%) as a function of compaction AV 
determined from equation (1) for initial porosities of q0 = 50, 60, 70, 80, 
and 90%. For typical deep-sea sediment with porosities from 50 to 90% 
and compactions between 0 and 0.5 the relationship is very smooth and 
close to linear. 

m o = [(1/2) (1 + cos A0 ) cos I, 0, cos A0 sin I ] (,3) 

The inclination shallowing can then be obtained by the exact 
expression 

2 cos A0 
tan(I-A/) = tan/ (4) 

1 + cos A0 

[Griffiths et al., 1960, equation 3, p. 377]. If we now definefo as 

1 - cos A0 

fG • 1 +cosA0 (5) 

equation (4) becomes 

tan(I-A/) = (1-fo)tanl 

which has the same form as equation (2) derived by King [1955] 
for a totally different model. The dependence of A/on A0 for a 
fixed I, in equation (6) is shown in Figure 2a, and Figure 2b gives 
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Fig. 2. Predictions of a model from Griffiths et al. [1960], here called 
model GKRW. (a) The inclination shallowing 3`/(deg) is shown as a 
function of the rolling angle 3,0 (deg), for a fixed initial inclination of 
I = 45 ø, equation (6). Note that for small rolling angles, there is very 
little inclination shallowing; a rolling angle of 60 ø is needed to produce 
3,1 = 10 ø. The nonlinearity of this function shows that for variable 
rolling angles the grains with very high rolling angles can outweigh those 
with lower values. (b) The intensity decrease, M/M o, with rolling angle 
3,0 (deg) of model GKRW, from equation (52), for initial inclinations of 
I = 0 ø, 45 ø, and 90 ø. 

the intensity deduced from equation (3) for various I. The rolling 
of magnetic spheres at the sediment water interface is analogous to 
the random rolling of grains due to rearrangement of sediment 
fabric in a compaction environment, which we explore further in 
this paper. 

Compacting Environment 

Blow and Hamilton [1978] proposed a compaction model 
which Anson and Kodama [1987] modified slightly to provide a 
better fit to their experimental data. The equations of these two 
models turn out to be very similar to the results of two of our 
rotating needle models, even though we start from totally different 
points of view. 

Model BH. Blow and Hamilton [ 1978] proposed a compaction 
model, where the magnetization shallows in the same way as a 
passive line marker, which can be thought of as a sloping 
imagined soft line in the sediment, which shallows due to the 
shrinking vertical dimension. One way to view this model is to 
assume that the vertical axis of the remanence is reduced in the 

same proportion as the compaction of the vertical dimension of the 
sediment, with no alteration of the horizontal magnetization. 
Keeping in mind the form of the equation obtained by King [1955] 
for inclination shallowing (see model K), and using simple 
trigonometry, they deduced the mathematical expression 

tan ( I- l•/) = ( 1 - A V ) tan I 

[Blow and Hamilton, 1978, Figure 6, p. 20]. However, the 
equation was not accompanied by a microscopic physical model, 
and their laboratory redepositional data were only marginally 
supportive of their model. Ozima [1980] conducted compaction 
experiments with ferromagnetic Co particles in a Cu matrix and 
found the inclination to follow the passive line marker upon 
deformation. Equation (7) of model BH is identical to equation 
(18) obtained for model lb of this study. 

Model AK. Anson and Kodama [1987] applied model B H to 
data from their laboratory compaction experiments with synthetic 
sediments. Their results suggested that model BH overestimates 
the inclination shallowing, and they modified equation (7) by a 
constant factor, a, such that 

tan ( I- l•/) = ( 1 - a AV ) tan I (8) 

[Anson and Kodama, 1987, equation 2, p. 685]. Best fits to the 
data were achieved for a = 0.63 + 0.18 for the acicular magnetite 
particles and a = 0.54 + 0.18 for the equidimensional magnetite. 
They proposed that the magnetite particles were electrostatically 
attached and rotated to the clay flake planes. Upon compaction the 
clay flakes would rearrange to more horizontal positions, resulting 
in inclination shallowing. Equation (8) turns out to be very 
similar to the equations of models l c and 4a of this study 
(equations (22) and (72)). 

MODELS OF THIS STUDY 

In this paper we propose several microscopic mechanisms to 
explain the compaction-induced inclination shallowing in 
sediments. The proposed models are used to derive mathematical 
expressions, relating inclination shallowing to sediment 
compaction. The proposed models can be categorized as 
(1) rotation of elongated or platy magnetic particles to more 
horizontal orientations, (2) rotation toward the horizontal of flat 
nonmagnetic fabric grains to which smaller magnetic grains are 
attached, (3) particle randomization leading to intensity decrease 
and possibly to inclination shallowing, and (4) the effects of 
expected initial within-sample dispersion. 

Rotating Magnetic Needles 

The simplest inclination shallowing models consider the 
rotation of elongated magnetic grains during sediment compaction. 
For simplicity we consider only very elongated needlelike grains 
magnetized along their long axis. We first assume perfect initial 
alignment of the needles with the external field, but later in this 
paper we examine the consequences of relaxing this constraint. 

In the first least sophisticated model the needles are enclosed 
between two converging, rigid horizontal layers, the rigid matrix. 
In a second more realistic case we consider the surrounding 
sediment matrix as a soft compressible medium. The two 
fundamental assumptions in these first two models are that the 
magnetic grains are acicular and that the surrounding nonmagnetic 
sediment grains behave as a soft compressible medium around the 
rigid needles. Because the shapes of the magnetic particles in 
natural sediments probably range between needles and 
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equidimensional, these models predict an upper limit of inclination 
shallowing. Therefore we consider an additional model where a 
fraction of the remanence carriers rotates during compaction and the 
rest of the carriers are unaffected. The needle models are also 

applicable to magnetized flakes, if they are magnetized along the 
flake dip. For the surrounding sediment to approximate a soft 
medium with respect to the magnetic particles, one would expect 
that the nonmagnetic matrix grains are much smaller than the 
magnetic needles. Although observations show that fabric grains 
are often considerably larger than the magnetic grains, the matrix 
framework supported by organic binder might on average respond 
as a soft compressible medium, because of random and 
nondiscriminatory behavior, rotating some needles (flakes) more 
and some less than predicted. This random grain rotation will lead 
to an intensity decrease, which we consider later. 

Model la : Rotating magnetic needles in rigid matrix. For this 
very simple model it is assumed that the remanence is carried by 
needle-shaped particles of length L, magnetized along their long 
axes. We assume that only compaction affects the remanence in 
the sediment. As compaction proceeds, the needles are not allowed 
to intrude the sediment above or below; only particle rotation is 
permitted. This mechanical model is shown in Figure 3a. From 
the left part of Figure 3a we find the trigonometric relation: 
1 = L sin I, and from the right part we obtain ( 1- AV ) = 
L sin ( I- zS/). These can be connected through L to give 

unit length of the needle can be related to the displacement of the 
surrounding sediment by 

Fv(r) = a 8s = a r b'V sin I (10) 

where o• is some constant, and the normal force on an element dr 
of the needle is 

dF• = FvCOSldr (11) 

which exerts a torque trying to rotate the needle toward shallower 
inclinations' 

L/2 v = rFv(r)cosldr (12) 

with the solution 

•' = ( 6t L 3 / 24 ) bY sin I cos I (13) 

Now it is reasonable to expect that this torque will affect the 
rotation of the elongated particles, against the internal friction in 
the sediment. For a small compaction step, bY, the inclination 
shallowing, t51, is assumed to be proportional to the torque; 
t51 N z', so 

sin(I-M) = (1-AV)sinl t51 = q bY sin I cos I (14) 

which relates the inclination shallowing to the compaction. The 
dependence of zS/on I in equation (9) is shown in Figure 3b, for 
various AV and the dependence of zS/on AV for a fixed initial 
inclination I in Figure 3c. For this model we note that the 
maximum effect of inclination shallowing is at very steep initial 
inclinations, but for lower initial inclinations the relationship 
between inclination shallowing and compaction is close to linear. 
For low initial inclinations this model predicts similar inclination 
shallowing as model BH. 

The constraint of the model that the needles cannot penetrate 
the overlying and underlying sediment appears to be unrealistic, 
especially for very steep inclinations, but it may be more 
compatible for shallow initial inclinations. For very steep initial 
inclinations, we would expect the needles to intrude the oncoming 
sediment from above and below as the surrounding sediment is 
compacted, accompanied by relatively smaller grain rotation. This 
situation is considered in the next model. 

Model lb: Rotating magnetic needles in soft matrix. We now 
consider a single needle of length L, sloping at an angle I from the 
horizontal; see Figure 4a. We set the coordinate system such that 
the center of the needle is the origin which remains fixed through 
the compaction. From this perspective there is no translation of 
the needle but only rotation about a horizontal axis. The 
horizontal plane through the origin is called plane O. As seen 
from plane O, the sediment surrounding the needle will compact 
both from above and below. We restrict the surrounding sediment 
from moving horizontally, so in fact we can view this as a solid 
walled container depressed by a porous piston. We define r as the 
length along the needle from the origin; r is positive above the 
plane O and negative below; s is the vertical component of r: 
s = r sin I. As the sediment compacts, by a small increment 
b'V, the sediment at height s above the plane O will experience a 
movement toward the plane O: s --> s - 8s = s ( 1 - bY ), leading 
to t•s = s bY. The vertical force of the compacting sediment per 

where r/is an efficiency parameter, indicating how effective the 
sediment is in rotating the needle. From equation (14) we can get 
the following differential equation: 

= q sin I cos I (15) 

and by definition we know that the inclination goes from I to 
( I - zS/) as the volume goes from 1 to ( 1 - AV ). Here we note 
that dV is not a linear measure of translation, so we transform dV 

to settlements dh, where dV = dh / h, and the thickness decreases 
from h = 1 to h = ( 1 - AV ). We obtain 

? '-•' ? I-AV 

sin I cos I h 
1 

with the exact solution 

(16) 

tan ( I- •/) = ( 1 - AV )" tan I (17) 

One way to estimate the constant r/ is to assume that for very 
shallow initial inclinations (I -- 0ø), the inclination shallowing is 
predicted by model la (equation (9)), but then tan I -- sin I, and tan 
( I - zS/) -- sin ( I - •/), and we therefore must have ( 1 - AV )" •, 
( 1 - AV ), leading to r/= 1, and the equation for model lb 

tan(I-M) = (1-AV)tanl (18) 

This equation is identical to equation (7) of model B H. The 
dependence of •/on I in equation (18) is shown in Figure 4b, for 
various AV, and the dependence of zS/on AV for a fixed initial 
inclination I, in Figure 4c. 
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Fig. 3. Model 1 a, rotating magnetic needles in rigid matrix, equation (9). 
(a) The magnetic needle of length L is enclosed between two rigid 
horizontal layers. Initially, on left the magnetic needle has the inclination 
I, and the sediment has the porosity 00' On right the layers have 
converged by AV and the water has been squeezed out so the porosity drops 
to 0 and the inclination is shallower by A/. (b) The predicted inclination 
shallowing A/(deg) as a function of initial inclination I (deg), for different 
compactions AV = 0.1, 0.3, 0.5. (c) The predicted inclination shallowing 
A/(deg) as a function of compaction AV, for initial inclination of I = 45 ø. 
The model predicts maximum A/at the magnetic poles (I -- _+90 ø) but is 
thought to be unrealistic for steep inclinations. 
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Fig. 4. Model lb, rotating magnetic needles in soft matrix, equation (18). 
(a) The magnetic needle of length L is surrounded by soft material. As the 
material compacts, toward the plane O, it exerts torques on the needle, 
tending to rotate it to shallower inclinations. (b) The predicted inclination 
shallowing A/(deg) as a function of initial inclination I (deg), for different 
compactions AV = 0.1, 0.3, 0.5. (c) The predicted inclination shallowing 
A/(deg) as a function of compaction AV, for initial inclination of I = 45 ø. 
For I = _+90 ø the needle will not rotate but rather will intrude the oncoming 
sediment above and below. 

For small compaction the maximum shallowing is predicted to 
be around initial inclinations of 45 ø , and the maximum moves 

toward slightly higher initial inclinations with increasing 
compaction. From equation (14) we see that for small 

.;ompactions A/-- { 180/n} (1/2) AV sin 21 (the term { 180/n} gives 
A/in degrees), so for a fixed initial inclination I, the inclination 
shallowing A/is approximately linear with compaction AV, and 
that behavior extends over the compaction values of interest, as 
shown in Figure 4c. 
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Increased concentration of magnetic material. The previous 
two magnetic needle models (1 a and 1 b) do not account for random 
rotations of the magnetic grains, and during compaction the 
intensity increases with increasing concentration of magnetic 
particles per unit volume 

M/M o = I / (1- AV ) (19) 

In the absence of randomization, the needle models predict 
significant increases in intensity with compaction. 

Model 1 c: Two types of magnetic grain shapes in soft matrix. 
Magnetic particles in natural sediments have a range of shapes, and 
we therefore consider a mixture of magnetized grains; a fraction, fn, 
are needles that obey the relation of model lb (equation (18)) and 
the rest ( 1 -fn ) are equidimensional particles that do not rotate 
and preserve the initial inclination I during compaction. Upon 
compaction AV the inclination of the fractionfn shallows by Ai 

tan ( I- Ai ) = ( 1 - A V ) tan I (20) 

The resultant vector is the sum of two vectors; one of length fn 
dipping at ( I - Ai ); the other of length ( 1 -fn ) dipping at h 
fin cos (I-A/),fn sin (I- A/) ) + ((1 -fn) cos I, (1 --fn) sin/), 
and we can find the total inclination shallowing from the total 
vector 

fn sin ( I- Ai ) + ( 1 -fn ) sin I 
tan(l-M) = (21) 

fnCOS ( l- Ai ) + (1--fn) COs l 

Using equation (20) and manipulating the trigonometric functions 
in equation (21), we obtain 

tan(l-M) = (1-cfnAV) tan/ (22) 

where the correction factor c is 

c = 1 / [f• + ( 1 --fn ) • COS21 + ( 1 -- AV )2 sin21 ] (23) 

Although c is weakly a function Offn, AV, and I, it is practically 
equal to unity over values of interest. For AV = 0, or I = 0 ø, 
c = 1, and for the range of compaction values AV from 0 to 0.5, 
initial inclinations I of 0 ø to 90 ø, and fractions fn from 0 to 1, the 
correction tactor c is always between 1 and 2. Indeed, if we further 

restrict our values to be f, > 0.5, I < 60 ø, and AV < 0.3, then c 
will be between 1.00 and 1.12. 

We note that equation (22) is nearly identical to the formula 
used by Anson and Kodama [1987] (equation (8) of model AK in 
this paper), where we replace their arbitrary constant a by c fn' 
The predictions of model 1 c are compared to that of model AK in 
Figure 5. The dependence of A/on I in equations (8) and (22) is 
shown in Figure 5a, for various AV, and the dependence of M on 
AV for a fixed initial inclination I is shown in Figure 5b. We 
note that the predictions are quite similar. 

Collapsing Sediment Fabric 

The most stable magnetic grains are expected to be small 
compared to the sediment fabric grains. If the magnetic grains are 
attached to fabric grains, they may rotate together during 
rearrangement of the matrix upon compaction. Clay flakes have 
strong shape anisotropy; however, any fabric with elongated or flat 
grains will give rise to a similar effect. In fact, any sediment, 
even composed of spherical grains, is subject to random grain 
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Fig. 5. Model l c, two types of magnetic grain shapes in soft matrix, 
equation (22), where a fractionfn of the magnetic carriers obey model lb, 
and the rest ( 1 -fn ) are invariant upon compaction. Model lc (solid 
lines) withf, = 0.62, is compared to model AK (dashed lines), equation (8) 
with a = 0.65. (a) The inclination shallowing A/ (deg) with initial 
inclination I (deg) for compactions AV = 0.1, 0.3, 0.5. (b) The inclination 
shallowing A/(deg) with compaction AV for initial inclination of I = 45 ø. 
The two models show very similar results. 

rotations which may be predominantly about horizontal axes and 
will therefore give rise to the same er•%ct. As the sediment 
compacts, the grains will rearrange themselves. Slight 
rearrangement of an individual grain can be described by a 
translation and rotation through an angle about some axis. The 
primary forces responsible for this rearrangement are the vertical 
forces of the gravitational compaction, and viscous drag due to the 
pore fluid flowing around grains mainly upwards to escape the 
decreasing pores. These forces will rotate the grains, 
predominantly about horizontal axes, analogous to model GKRW 
but now in compactional environments. This process will cause 
some randomization in the directions of the magnetic grains and 
also inclination shallowing. 

In the following two collapsing fabric models we assume no 
relation between the orientations of flakes and magnetic grains. 
Similar to the needle models we assume perfect initial alignment 
of the magnetic moments with the external field, even though the 
fabric flakes may be oriented in a random fashion. Later in this 
paper we examine the consequences of allowing for initially 
dispersed magnetic moments. We assume now that the small 
magnetic carriers are somehow attached to the relatively large 
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fabric flakes in the sediment surface layers subsequent to the initial 
blocking of the remanence, and subsequently they rotate with the 
flakes during compaction. We define a normal vector perpendicular 
to the upper flat side of a flake. That normal deviates by the angle 
0 from the vertical, and 0 is therefore also the dip of the flake 
plane from horizontal. The normal vector has the azimuthal 
direction •, from north. The normalized probability distribution of 
flakes with particular angle 0 is PT (0)' 0 < 0 < •/2, PT (0) will 
change with compaction, as more of the flakes acquire shallower 
dips. 

As the sediment compacts by AV, each flake with the initial 
dip 0 will rotate through the angle ,50 to a shallower dip (0-,50). 
By analogy to model GKRW we see that these flakes will 
transform the initial magnetic unit vector (cos I, 0, sin I) to an 
equivalent of equation (3) 

mo(0) = [(1/2)( 1 + cos ,50 ) cos l, O, cos ,50 sin l ] (24) 

We note that this is no longer a unit vector. 
By connecting ,50 to a given ,SV and 0, we can find the 

resultant remanent magnetization after compaction by integrating 
equation (24) over all the fabric flakes 

m f = ma ( O) P f ( O) d O (25) 

By considering equation (24), we can split mf in equation (25) into 
the three components ( m x , my, m z ): 

m x = (1/2)(1 +cos,50)coslPf(O)dO (26) 

Equation (31) can now be written on the same form as equation 
(2), 

tan ( I- A/) = ( 1 -f f) tan I (32) 

where 

1 - F(AV) 
ff-- (33) 1 + F(AV) 

So far we have avoided relating ,50 to 0 and ,SV in equation 
(30), which in general is rather complex. However, two simple 
models can be set up. In the absence of other randomization one 
probably represents an overestimate and the other an underestimate 
of the flake rotation ,50. These models are intuitively similar to 
the rotating magnetic needle models, and are here called model 2a, 
collapsing rigid matrix, and model 2b, collapsing soft matrix. 

Model 2a : Collapsing rigid matrix. A simplified flake-fabric 
model will give an overestimate of the rotation toward horizontal 
alignment in the absence of other randomization if we assume that 
each individual fabric flake is enclosed between two rigid 
horizontal surfaces through compaction. By analogy to model 1 a 
(equation (9)), the rearrangement of the flakes is described by 

sin(0-,50) = (1-,sV)sin0 (34) 

See also Figure 3a. Through this equation we have connected ,50 
to 0 and ,SV. Furthermore, we assume that the flakes are initially 
spherically randomly distributed; hence 

PT (0) dO = sin 0 dO (35) 

m = 0 (27) 
y 

m z = cos,50sinlPf(O)dO (28) 
"0 

Now we can calculate the magnetic inclination after the 
compaction through the relation tan ( I- A/) = m z/mx: 
tan ( I- A/) = 

Now we can solve equation (30) by use of equations (34) and (35). 
The derivation is shown in the appendix, and the solution is found 
to be exactly 

( 2 AV- AV a )3/2 _ 3 AV a + 2 AV 3 
F(,SV) = 1 - (36) 

3 - 6,5V + 3,5V 2 

(1/2) cos I 

sin I cos ,50Pf (O) dO 
'"0 

I •ffoPf(O) dO + os ,50Pf (O) dO 
'"0 

(29) 

We use equation (33) to define a function fa which can be 
approximated for ,SV between 0 and 0.5 as fa -- 0.101 ,SV + 
0.245 ,SV 2. The equation for model 2a has the same form as 
equation (2) 

tan (1-`51) = ( 1 -fa) tanI (37) 

The probability distribution is assumed to be normalized, and by 
def'ming 

•(AV) = cos A0 ?•(0) dO (30) 
'"0 

we get 

2 F(,SV) 
tan (I-AI) = tanI (31) 

1 + F(AV) 

The dependence of fa on ,SV (from equations (33) and (36)) is 
shown in Figure 6a. The dependence of A/on I in equation (37) is 
shown in Figure 6b, for various ,SV, and the dependence of A/on 
,SV for a fixed initial inclination I is shown in Figure 6c. The 
function fa takes on much lower values than ,SV, leading to a very 
small inclination shallowing effect. Note that the function fa is no 
longer linear with compaction, ,SV. 

Model 2b : Collapsing soft matrix. As an underestimate of the 
flake rotation we use an analogy to model lb (equation (18)), for 
the rotation of the fabric flakes. As before we assume that the 

initial dip 0 diminishes to ( 0- ,50 ) after a compaction ,SV. 



4488 ARASON AND LEVI: MODELS OF INCLINATION SHALLOWING 

0.i 

0. 8 

Mode ] 2a 

' I ' I 

0.0! 

0.00 
0 0 

•nde l 2b 

' I 

0.2 0.4 

Compaction, Z•V 

0.0 
30 60 90 0 30 60 90 

Initial Inclination, Z Initial Inclination, Z 

• , I • I 
0 0.2 0.4 

b compaction, AV 

4 

I ' I 

1-45 

0.2 0.4 

Compact ion, Zl V 

Fig. 6. Model 2a, collapsing rigid matrix, equation (37). This is thought 
to be an overestimate, when other randomization processes are omitted, of 
the inclination shallowing associated with rotation of the fabric grains to 
which smaller magnetic grains are attached. (a) The dependence of the 
function fa on compaction AV, according to equations (33) and (36). (b) 
The predicted inclination shallowing A/(deg) as a function of initial 
inclination I (deg) for different compactions AV - 0.1, 0.3, 0.5. (c) The 
predicted inclination shallowing A/(deg) as a function of compaction AV 
for initial inclination of I = 45 ø. There are strong similarities to models 
BH, AK, lb, and lc, but a factor of 3-10 in magnitude of the inclination 
shallowing. 
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Fig. 7. Model 2b, collapsing soft matrix, equation (40). Note that all 
vertical scales differ by a factor of 10 from Figure 6. This is considered an 
underestimate of the inclination shallowing associated with the collapsing 
fabric. (a) The dependence of the function f•, on compaction AV, according 
to equations (33) and (39). (b) The predicted inclination shallowing A/ 
(deg) as a function of initial inclination I (deg), for different compactions 
AV = 0.1, 0.3, 0.5. (c) The predicted inclination shallowing A/(deg) as a 
function of compaction AV, for initial inclination of I - 45 ø. Note that 
this model predicts less than 0.5 ø inclination shallowing, which is hard to 
detect. 

Therefore 

tan(0-A0) = (1-AV)tan0 (38) 

Equation (30) is solved in the appendix, using equations (38) and 
(35). It is found to be exactly 

F(AV) = + 
2(2-AV) 

(2-AV) 2 - 1 

4 (2 - AV) •/AV ( 2 - AV ) I+•AV(2-AV) / In (39) 

• - •//w (2- 
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As before, we define the function fb using equation (33); fb is 
shown in Figure 7a and can be approximated for low AV as 
fo -- 0.0384 AV 2 + 0.1149 AV 4. Therefore the equation for model 
2b has the same form as equation (2): 

tan (I-AI) = ( 1 - f •, ) tan/ (40) 

The dependence of A/on I in equation (40) is shown in Figure 7b, 
for various AV, and the dependence of A/on AV for a fixed initial 
inclination I is shown in Figure 7c. This underestimate of the 
inclination shallowing in collapsing fabric is about a factor of 10 
lower than by model 2a. For compaction values lower than 0.5 
this model predicts a maximum inclination shallowing less than 
0.5 ø which would be very difficult to detect in nature. 

Magnetization intensities due to fabric rearrangement. With 
the rearrangement of fabric flakes in models 2a and 2b there is 
some dispersion of the magnetic moments and an associated 
intensity decrease. The concentration of magnetic material will 
increase as we sample more compacted sediment, as in model 3a. 
By connecting equation (33) to (30) and (26) - (28) we get the 
intensity 

•/1 - ( 2 ff_ff2 ) sin21 
M/M o = (41) 

( 1 -AV) ( 1 +ff) 

By insertingfa forff in equation (41), we get the predicted intensity 
with compaction for model 2a, and by inserting fo we get the 
prediction for model 2b. The intensity with compaction in model 
2a is shown in Figure 8, for various initial inclinations I. We do 
not show the effect of model 2b, since the change is so small that 
it becomes indistinguishable from the bold reference curve, 
representing the increased concentration of magnetic material 
during compaction, equation (19). We note that even our 
overestimate (model 2a) does not decrease the intensity enough to 
account for the increased concentration effect. Therefore, in the 

' I ' I 

•'• 90: 
'•"1 

, I i I 
0.• 0.4 

Compaction. •V 

Fig. 8. Normalized intensity as a function of compaction for models 1 and 
2. The bold curve represents the increased concentration of magnetic 
material, assuming no randomization, equation (19). The higher 
intensities are caused by more magnetic material per unit volume. Also 
shown is the intensity predicted by model 2a, collapsing rigid matrix (the 
three plain curves), equation (41), for initial inclinations I = 0 ø, 45 ø, and 
90 ø. The effect of model 2b (not shown in the figure) is so minute that 
the intensities become indistinguishable from the bold reference curve. 
The two collapsing fabric models (2a and 2b) do not predict enough 
dispersion of the magnetic moments to account for the increased 
concentration of magnetic material due to the compaction. 

absence of other randomization, the intensity will increase with 
compaction. 

Microscopic Kneading of the Sediment 

The previous models are deterministic descriptions of 
inclination and intensity changes with compaction. Decrease of 
the intensity of magnetizations have been observed during 
compaction, both with depth (or time) in sediment cores and 
compaction in laboratory experiments. This effect has been 
attributed to randomization or misalignment of the magnetic grains 
[Stober and Thompson, 1979; Karlin and Levi, 1982]. As seen in 
Figure 8 it is impossible to decrease the intensity with the models 
la, lb, 2a, and 2b, so we consider two models of random grain 
rotations. Model 3a, unbiased randomization of grains, will not 
affect the inclination but will decrease the intensity, and model 3b, 
random rolling of grains about horizontal axes, will decrease the 
intensity and also will introduce inclination shallowing through 
the rolling spheres effect described by Griffiths et al. [ 1960] (model 
GKRW). The magnetic torques of the grains are negligible 
compared to the mechanical forces responsible for their 
rearrangements, so for these two models we assume that growth of 
secondary remanence during grain randomization [Tucker, 1980] 
can be neglected. 

Model 3a : Unbiased randomization of grains. A simple way 
of looking at an unbiased randomization process is to assume a 
group of initially parallel magnetic moments, which will be 
rotated through some angles, 0. Some grains will experience 
small rotations, and others greater. It is reasonable to assume that 
these angular deviations can be described by the Fisher distribution 
Pv, which is analogous to the normal distribution on a sphere 
[Fisher, 1953] 

Pv(O) dO = e •cøs øsin 0 dO (42) 
2 sinh tc 

where to is the precision parameter of the distribution. Due to the 
symmetry of the random rotations we expect that the average 
magnetic direction of the sample will not change. The magnetic 
intensity of a unit vector, that has rotated through 0, will therefore 
only add cos 0 to the total intensity, which can then be calculated 

M/Mo = Pv(O) cos 0 dO (43) 
'•0 

To solve equation (43), it is convenient to make the substitution 
s--cos 0, which transforms it to 

with the solution 

to rsds = e (44) M/Mø 2 sinh tc 

M/M o = cothtc- 1/to (45) 

which is the Langevin function L(to). Convenient approximations 
to the Langevin function (L(tc) -- tc/3 for low tc, and L(tc) • 1 - 1/to 
for high to) are not fully applicable since we are also interested in 
intermediate values. We can also take into account the increased 

concentration effect due to an arbitrary compaction AV, even 
though we are not relating tcto AV 
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coth •c - 1/•c 
= (46) M/Mø 1 - AV 

where to can, for instance, be related to 063, the angular standard 
deviation, that is, 63% of the moments are rotated through an 
angle less than 063 

cos 063 = 1 + (1/to) In [ 1 -0.63 ( 1 -e -2 •:) ] (47) 

The normalized intensity in equation (46) is shown as a function 
of 063 in Figure 9a for various AV. 

So far in this model we have assumed no initial within-sample 
dispersion. To address the problem of initial dispersion, we 
consider a partially randomized sample where different subsets of 
grains have parallel magnetic moments. The total magnetization 
of the ith subset is m i, and the magnetization direction of the ith 
subset is at angle 19/to the average direction of the whole sample, 
and it contributes m/cos O/to the sample's total intensity. Upon 

o 
o 

Hode I 3a 
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. 
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Fig. 9. Model 3a, unbiased randomization of grains, equation (46). (a) 
Normalized intensity predicted as a function of the characteristic rotation 
angle 063 (angular standard deviation), equation (47), for different 
compaction values AV = 0 (bold curve), and 0.1, 0.3, 0.5. Here we are 
only considering how much randomized grain rotation is needed to depress 
the intensity. Note that a considerable grain rotations are needed to offset 
the intensity of magnetization. (b) Normalized intensity versus the 
randomization parameter •, equation (49). The term randomization is 
introduced as a fundamental property of the net magnetic moment of a 
sedimentary sample. Randomizations are independent of distribution of 
magnetic moments and other initial properties of a given sediment. 
Randomizations are additive. 

randomization the subset under consideration retains its average 
direction, due to symmetry, but there is a decrease in intensity 
m i L(tc) (as described by equation (45)), because all the moments 
of the subset were initially parallel. Since neither the subset's 
direction nor the direction of the whole sample have changed 
during randomization, our subset will contribute m i L(tc) cos 0• to 
the total intensity. The intensity contributions of all subsets will 
decrease as L(to), and the total moment will therefore also decrease 
as L(to). Therefore randomization in samples with initial 
dispersion also obeys equation (45). 

From this result we see that a sample undergoing 
randomization by to• will have intensity M•/M o = L(tq). If we 
take this randomized sample and randomize it again by arbitrary 
chosen to 2, its intensity will be M2/M o = L(tq) L(to2) and so on. 
We now define the term randomization, •, 

• -= - In [ L(to) ] / In 2 (48) 

The factor (1/In 2) gives • the property that by increasing the 
randomization by 1 will decrease the intensity by a factor of 2. 
With the aid of equation (45) we see 

M = M 0 e-* In 2 (49) 

and for a randomization • followed by •2, followed by •3 and so 
on, we see that the total randomization is partially additive 

•total ---- •1 + •2 + •3 + '" (5O) 

This additivity of randomization is valid for all to values, 
In Figure 9b we show how the intensity decreases with 
randomization. For high to, L(to) -- 1 - 1/to, and In (1 - e) 
therefore, from equation (48) we get • ~ 2/to for high to values. 
This is the variance of the Fisher distribution. However, for low 

to, neither 2/to nor the variance are partially additive as is the 
randomization. 

From equation (49) we note that for a sedimentary section with 
constant reworking per unit depth (or even unit of time) we can 
define •'-- In 2 •h (where h is the thickness of the section) and we 
would expect an intensity profile with depth z 

m(z) = m o e -½z (51) 

where M 0 would now represent intensity at the top (z = 0). We 
therefore predict exponential decrease of intensities in sediments 
where the randomization is constant per unit depth. 

This model predicts no directional changes but leads to the next 
model where we consider what happens if the randomization is 
limited to rotations about horizontal axes. 

Model 3b .' Random rolling of grains about horizontal axes. 
Instead of trying to relate A0 to 0 and AV in the collapsing fabric 
models (2a and 2b), we can consider what effect a grain rotation 
about horizontal axes would have on the intensity of the remanent 
magnetization, independent of how much compaction it would 
require. For a rotation of the magnetic grains about randomly 
distributed horizontal axes, by some fixed characteristic angle A0, 
we get the inclination shallowing shown in equation (6). From 
equation (3) (in model GKRW) one easily obtains the intensity 
decrease as 

M/M o = aJ' (1/4) (1 + cos A0) 2 cos21 + cos2A0 sin21 (52) 
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Note that we do not relate A0 to AV in this model. The effect of 

equation (52) is shown in Figure 2b for various initial 
inclinations. 0.8 

Model GKRW shows the inclination shallowing when all 
grains roll by the same rolling angle A0. Furthermore, we have 
connected rolling of grains to compaction in models 2a and 2b in a 0 6 
particular deterministic way. In reality, one would expect some 
grains to roll more and others less, depending on many 
unpredictable factors. Therefore an obvious extension of model 0 4 
GKRW is to allow for a distribution in A0, where rolling occurs 
about horizontal axes. Distribution of rotation angles about a 
fixed axis can be described as a distribution on a circle. The 0 2 

"normal" distribution on a circle is the Von Mises distribution, 

closely related to the Fisher distribution on a sphere [Von Mises, 
1918; Fisher, 1953' Mardia, 1972, p. 57] ø.ø 0 

1 b PM(A0) d(A0) = •e •cos•ø d(A0) (53) 
2 n I0(tc) 

where I0(to), the hyperbolic Bessel function of order zero 
(sometimes also called the modified Bessel function), is used to 

normalize the distribution. I0(to) can not be written in terms of 
elementary functions. In choosing the Von Mises distribution to 
describe the rolling angles, we do not take into account that some 
grains are elongated and will resist rolling through the horizontal. 
However, in the absence of detailed knowledge of individual grain 
behavior, we take the Von Mises distribution with zero mean 

(symmetric rolling) as a good first-order estimate. The Von Mises 
distribution is shown in Figure 10a, for selected values of 

Now we use the result of Griffiths et al. [1960], (tn o in 
equation (3) in this paper) to determine how the unit vector 
tn = ( cos I, 0, sin I ) rotates to tni• 

mi• = M(A0) tno(A0) d(AO) (54) 
_ 

or split into the components ( mi_ix, mHy, m m ) 

'.• 2 n I0(t0 _ 

ecos 0(1/2)(1+cos A0) cos I d(A0) (55) 

mHy = 0 (56) 

• 1 'j2 nI0(tC) _ 

ecos cos/x0 sin I d(A0) (57) 

with the solutions 

mi_ix = (1/2)[ 1 + Ii(to)/Io(tO)]cosI 

m m = [ Ii(to) / I0(to) ] sin I 

where I•(to) is the hyperbolic Bessel function of first order. 
Now we can calculate the inclination shallowing 

(58) 

(59) 

2 Ii(r)/Io(r) 
tan (I-M) = tan I (60) 

1 + 

0 
0 

a 
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Fig. 10. Fundamental functions used in models 3a and 3b. (a) The Von 
Mises distribution, equation (53), is shown versus the rolling angle A0 
(deg), for spread parameters of 1/tc = 0.2, 0.6, 1.0. We note that these 
spread values call for considerable grain rolling. (b) The Langevin 
function L(tc) (solid), equations (45) and (65), compared to the ratio of the 
hyperbolic Bessel functions Ii(tc)/Io(tC) (dashed), that appears in equations 
(58) through (63). These functions are very similar. For low tc(tc < 0.5) 
they can be approximated as L(tO -- rd3, and I 1 (tc)/Io(tC) -- td2, and for high 
tc(tc> 3) they can be approximated as L(tc) -- 1 - 1/tc, and Ii(tc)/Io(tC ) -- 
1- 1/(2tc). 

and by defining 

] -/](r)//o(r) 
fh • (61) 

] -.1-- 

we get the common form 

tan ( I- A/) = ( 1 --fh ) tan I (62) 

The intensity is 

M/M o = •J (1/4) [1 + I](tc)/Io(tO)]2 c0s2I + [/i(K')/[0(K')]2 sin2I (63) 

We note that the hyperbolic Bessel functions always occur as 
the ratio I•(tc)/Io(tO), and even though both I0(to) and Ii(to) blow up 
very fast with increasing to, their ratio is very similar to the 
Langevin function. For high •c, Ii(•c)/Io(tO) -- 1 - 1/(2to) -- L(2to), 
and for low tc, I 1 ( tc)/Io(to) -- to/2 -- L(1.5 to). The Langevin function 
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and the ratio of the hyperbolic Bessel functions is shown in Figure 
10b. The characteristics of model 3b are shown in Figure 11, 
where we show the exact solutions of equations (62) and (63), 
using the inverse of the precision parameter, which we call the 
"spread" parameter (1/•c), as a measure of random rolling. We note 
that random rolling about horizontal axes, leading to intensity 

Mode 
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Fig. 11. Model 3b, random rolling of grains about horizontal axes, 
equation (62). (a) The inclination shallowing A/ (deg) versus initial 
inclination I (deg), for fixed amounts of random rolling of sediment grains 
about horizontal axes, measured by the "spread" parameter 1/to = 0.2, 0.6, 
1.0. (b) The inclination shallowing A/(deg) versus spread parameter 1/to, 
for a fixed initial inclination I = 45 ø. (c) The normalized intensity 
changes with the spread parameter 1/to, for initial inclinations I = 0 ø, 45 ø, 
and 90 ø. In essence we have transformed a model by Griffiths et al. 
[1960], model GKRW in this paper, to allow for a distribution in rolling 
angle, resulting in significant inclination shallowing. 

decreases of 20-50%, results in significant inclination shallowing. 
We believe that microscopic randomization of sediment is an 

important mechanical factor in sediments. The random rolling 
about horizontal axes may be much less important than the 
isotropic randomization but still sufficiently significant for 
producing inclination shallowing. Different lithologies and 
physical properties may control the amount of isotropic 
randomization relative to random rolling about horizontal axes, 
making it difficult to predict the magnitude of this effect. 
However, the ratio between these two processes may be unique for 
a given lithology and once established, prediction is possible. 

Initial Dispersion of the Magnetic Moments 
Initial distribution. We are interested in the initial within- 

sample distribution of magnetic moments. King [1955] assumed 
relatively low degree of alignment of magnetic moments within 
the sediment, so that the intensity of magnetization would be 
proportional to the external field strength. Nagata [1962] was first 
to study distributions of within-sample dispersions. To study the 
probable initial distribution of magnetic moments, we consider the 
acquisition of remanence in the sediment close to the sediment 
water interface. A magnetic particle of net moment m oriented at 
an angle 0 to the external magnetic field H will have a torque, 
m H sin 0, which will tend to rotate the grain toward the field 
direction, while thermal agitations due to Brownian motions 
compete with this aligning force [Collinson, 1965]. This problem 
is identical to Langevin's classical theory of paramagnetism of the 
alignment of molecules with magnetic moments in an external 
magnetic field [Langevin, 1905; Chikazumi, 1964, pp. 60-62]. In 
fact, any randomization agent, such as bioturbation, will fight the 
alignment. The distribution of the magnetic moments in 
Langevin's theory is 

N (mH/kT) 
P(O) dO = e(mH/kr)cøsO sin OdO (64) 

2 s inh ( m H / k T ) 

where k is Boltzmann's constant, T the absolute temperature, and 
N is the number of individual moments (Nm is the total moment, 

when all moments are parallel). We note that if we normalize this 
distribution to unity (N = 1), this is the Fisher distribution with 
tc = m H / k T. Langevin [1905] found the net moment to be 

M/M o = cothtc- 1/to (65) 

since then called the Langevin function L(tc). Even though it has 
been shown that the distribution and the net moment may vary 
with grain size [Stacey, 1972], we consider equations (64) and (65) 
as an adequate first-order estimate of the initial within-sample 
distribution of the magnetic moments and its net moment. 

It should be possible to estimate the amount of initial 
dispersion in sediments. Kent [ 1973] obtained a linear dependence 
of the remanence on the external field for redeposited deep-sea 
sediments in fields up to 120 gT. This implies that the external 
fields were still in the linear range of the Langevin function, 
indicating that M/M o is less than 10% and tc < 0.3. Similarly, 
Khramov [1968] observed linear behavior to fields 10 times the 

present value, leading to the estimate M/M o < 3% and tc < 0.1. 
These estimates provide an upper limit to the alignment, but they 
indicate relatively poor alignment. 

In laboratory depositional experiments with synthetic sediment 
one has better control of the concentration and domain state of the 

magnetic material, which might lead to better estimates of M/M o . 
Our best estimate of probable values of M/M o comes from the data 
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of Anson and Kodama [ 1987]. From their description we estimate 
that each of their samples contain approximately 10 -s kg of 
magnetite. Their acicular magnetite (0.45 gm x 0.07 [tm) is 
clearly single domain [e.g., Levi and Merrill, 1978], for which we 
can assign the saturation magnetization of magnetite 
92 A m 2 kg -•. Therefore, if all the magnetite needles in a sample 
(10 -5 kg) were aligned parallel, the sample would have the 
magnetic moment 10 -3 A m 2. The magnetic moments of their 
samples average to 15.5 x 10 -7 A m 2 ranging from 4.1 to 36.3 at 
the lowest compaction values of the 14 samples [Anson and 
Kodama, 1987, Table 1 ]. Therefore we can estimate the alignment 
for these samples: M/M o -- 0.2%, and tc-- 0.005. By taking into 
account possible impurities, crystal imperfections, and probable 
grain size distribution of their magnetite we note that this will be 
a slight underestimate of alignment, but accounting for such 
factors can probably not bring the estimate of the alignment above 
1%. We conclude that the orientation of submicron magnetic 
grains is probably nearly random in natural sediments, redeposited 
natural sediments, and synthetic sediments. Of course, there is a 
small but sufficient orientation bias toward the ambient field 

direction to account for the net observed remanent magnetism. 
Model 4a : Initial within-sample dispersion. So far we have 

ignored any effects of initial within-sample dispersion of magnetic 
moments on the inclination shallowing. Within-sample 
dispersion would tend to smear out the dependence of A/on I. By 
assuming that individual grains obey an equation of the form 

tan(i-Ai) = (1-e)tani (66) 

we see that Ai at middle inclinations (about 45 ø) will be less than 
predicted by equation (66) due to smearing. From symmetry of the 
expected dispersion we note that the inclination shallowing, Ai, 
will still be zero at I = 0 ø and + 90 ø. 

We solve the problem of initial dispersion by starting with a 
unit vector composed of inclination, i, and declination, d: 

m = (cosicosd,cosisind,sini) (67) 

This vector makes the angle 0 with the sample's mean direction 
(inclination I and declination of zero) which can be calculated from 
the scalar product of m and ( cos I, 0, sin I ) 

cos0 = sinlsini + coslcosicosd (68) 

The unit vector, m, is subsequently rotated to a new shallower 
inclination (i- Ai), defined by equation (66), but the declination is 
kept unaltered at d. The unit vector m is therefore transformed to 

m' = [cos ( i- Ai ) cos d, cos ( i- Ai ) sin d, sin ( i- Ai )] (69) 

The vectors m are assumed to obey the Fisher distribution about 
the mean direction; hence the frequency density of the vector m is 
proportional to 

e Kcøsø (70) 

To get the total inclination shallowing, we therefore integrate over 
all directions (d,i), weighted by equation (70) and a geometrical 
factor of cos i: 

cos i e •cøs 0 sin ( i - Ai ) dd di 
'•0 

(71) 

I•/2 12• cos i e •cøs 0 

-•/2 "0 

cos ( i - Ai ) cos d dd di 

where ( i - Ai ) and 0 are functions of I, i, d, and e through 
equations (66) and (68). To solve this analytically turns out to be 
complicated; instead we make the approximation 

e •cos 0 __ 1 + tc cos 0 (72) 

which is reasonable for small tc. With this approximation, 
equation (71) is solved in the appendix and has the solution 

tan(I-M) = (1-be)tanI (73) 

where 

(1-be) = 

2 (l-e) arccos(1-4e+2e 2) - 4 (l-e) 2 •/2e-e 2 
(74) 

-( 1-4e +2e 2) arccos( 1-4e +2e 2) + 2 (l-e) 4 2e-e2 
Exact solution to equation (71) may be written on the form of 
equation (73), where b would be a function of e and also slightly 
dependent on tc and I. However, with the approximation in 
equation (72), b becomes independent of tc and I. We have studied 
numerical solutions to the exact form of equation (71) and found 
the solution to start deviating from the approximation in equations 
(73) and (74) when tc> 0.5 (1% error in b). Furthermore, if the 
initial distribution were not exactly Fisherian, this would affect the 
function b. Therefore we believe the approximation in equation 
(72) to be adequate. For e between 0 and 0.5 we can estimate b in 
equation (74) as 

b -- 0.593 + 0.232e (75) 

The choice between equations (74) and (75) depends on the need for 
accuracy. The results of this model are shown in Figure 12. We 
note that a sediment obeying the equation of model B H on a 
microscopic level but composed of rather dispersed moments will 
appear to be obeying model AK macroscopically with the 
numerical value a -- 0.65, within error bounds of the estimate of a 
that Anson and Kodama [1987] obtained experimentally. We 
therefore compare the predicted inclination shallowing of model 
AK with a = 0.65, model 1 c with fn = 0.62, and model 4a with 
e = AV, in Figure 13a. They are very similar. 

For the above estimate of b, we have assumed that the 

sediment obeys equation (66) on microscopic level. All our 
models are of this form, except model l a. In the appendix we 
•show that assuming equation (9) (model 1 a) on a microscopic level 
res•ults macroscopically in the same form as equation (73) but with 
a different constant b, which we call b' In the appendix we show 
that b' is 

in 

tan ( I- zX/) = z-average 
m 

x-average 

2 (l-E) 3 
( 1 - b' e) = (76) 

((I-E)2-1) K(1-e) + ((l-e)2+ 1) E(1-e) 
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Fig. 12. Model 4a, initial within-sample dispersion, equation (73). (a) 
The function b as a function of e, (b tums out to be close to a constant 
b--0.65). (b) The inclination shallowing ̀5/ (deg), versus initial 
inclination I (deg) for various e = 0.1, 0.3, 0.5. (c) The inclination 
shallowing `5/(deg) versus e, for initial inclination I = 45 ø. The effect of 
initial dispersion on a sediment that on a microscopic level satisfies 
tan ( I - ,51 ) = (1 - œ) tan I is to make it appear macroscopically to 
satisfy tan ( I - A/) = ( 1 - b œ ) tan I. 

where the special functions K and E are the complete elliptic 
integrals of the first and second kind, respectively. For 
compaction values between 0 and 0.5 (œ = AV for model l a) we 
can approximate b' in equation (76) by 

b' -- 1.43 - 0.66 AV (77) 

3O 

' I ' 

, I , I 
0 0.2 0.4 

Compaction, A V 

Z•V = 0.5 

• •o 

o 
o 30 60 90 

Initial Inclination, I 

Fig. 13. Comparison of the predicted inclination shallowing of some of 
the models. (a) Comparison of model lb (bold line), equation (18) when 
model 4a, equation (72) with œ = ,SV, has been taken into account, model 
AK (dashed line), equation (8) with a = 0.65, and model lc (solid line), 
equation (24) with f, = 0.62, all for initial inclination of I = 45 ø. We note 
that the predictions of these models are very similar. (b) Comparison of 
macroscopic predictions of models la (dotted curve) and model lb (dashed), 
when the effect of initial within-sample dispersion (model 4a) has been 
taken into account. For reference we also show the microscopic form of 
model lb (solid), equation (18), when the effect of model 4a has not been 
taken into account. All curves are for compaction values ,SV = 0.5, where 
b = 0.716 and b'= 1.123 (from the exact equations (74) and (76), 
respectively). 

One remarkable result of the derivation in the appendix is that 
for the assumed form of the initial within-sample dispersion, we 
will obtain macroscopically an equation of the form 

tan(I-A/) = (1-F)tanI (78) 

independent of the form of the equation of the microscopic 
mechanism responsible for the inclination shallowing. The 
microscopic mechanism serves only to define the function F. The 
effects of the expected initial within-sample dispersion on the 
models discussed in this paper will be to dampen the resultant 
inclination shallowing in equations (18), (22), (32), (37), (40), and 
(62) according to equation (73). This effect transforms the different 
form of equation (9) of model l a to this standard form, with the 
modifying constant b' instead of b. We compare the transformed 
versions of models 1 a and lb in Figure 13b. The effect of initial 
dispersion should also affect equations (2), (6), (7), and (8), even 
though one may say that it is built in equation (8). Because of the 
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low initial alignment in natural sediments, the intensity variation 
in equations (41), (52), and (63) should be nearly independent of 
the initial inclination I. In these equations, I should be replaced by 
the effective average inclination leff which is constant about 30 ø 
(the average I over positive inclinations, weighted by the area of 
the directional sphere (cos I)). In equation (23) the correction 
factor c, should also be nearly independent of I, which makes it 
still closer to unity and it can probably be omitted in practical 
situations. 

CONCLUSIONS 

We have shown three possible mechanisms for inclination 
shallowing and a fourth process dampening the effect of all the 
other models slightly. The described models are realistic to 
different degrees. It is not usually known to what extent the 
magnetic minerals rotate directly, or whether they are attached to 
fabric flakes and are rotated through fabric rearrangements of the 
sedimentary matrix. Our calculations show that fabric 
rearrangement can not be a major source of inclination shallowing 
or intensity decrease. Sometimes deep-sea sediments show 
intensity decrease downhole, in otherwise homogeneous sections. 
Neglecting chemical alterations, this can be explained by 
directional randomization of the magnetic grains. The dispersion 
of magnetic moments predicted by the collapsing fabric, reduces 
the intensity less than the increased concentration due to 
compaction, and therefore leads to an intensity increase (Figure 8). 
In contrast, the randomization models readily predict the intensity 
decrease and in addition some inclination shallowing. We are 
therefore inclined to favor random rolling of sediment grains about 
horizontal axes as a significant process in sediments, leading to 
intensity decrease and inclination shallowing. The dampening of 
the inclination shallowing predicted by considering the effect of 
initial within-sample dispersion of moments is inevitable, and we 
believe that it has to be taken into account in all inclination 

shallowing models. 
Studies of the fabric of clay rich sediments indicate that near 

the surface, the clay flakes are more or less randomly oriented, but 

compaction tends to collapse the matrix and reorient the particles 
to lie down with their flat surface horizontal [Bennett et al., 1981 ]. 

Clay flakes have been reported to rearrange to nearly-horizontal 
orientations at depths of about 100 m in clay-rich deep-sea 
sediments [Faas and Crocker, 1983]. 

We have not been concerned with geochemical processes and 
possible dissolution of the magnetic grains in this paper, even 
though dissolution may be responsible for significant intensity 
decreases in some sediments [Karlin and Levi, 1985]. Neither have 
we addressed the effect of grain size. It is possible that in the 
randomization models larger grains may be less affected than the 
smaller ones. However, the grain size dependence is diminished 
whenever the magnetic grains are immobilized by being attached to 
larger fabric grains, because the matrix grains are usually 
considerably larger than the particles responsible for the stable 
remanence in sediments. 

Inclination shallowing due to sediment compaction is clearly of 
great concern for paleomagnetism and the interpretation of 
paleomagnetic data. In this study we introduce simple mechanical 
models to derive mathematical expressions for the inclination 
shallowing during sediment compaction. We believe that all the 
models represent realistic physical processes active in sediments 
(except for model 1 a at high values of/). The relative importance 
of the different mechanisms depends on the nature of the sediment 
and cannot yet be predicted a priori. However, several or all the 
processes may be active in any compacting sedimentary 
environment. In Table 1 we summarize the equations for the 
inclination shallowing models, taking into account the effect of 
initial within-sample dispersion (model 4a). We note the parallel 
structure of the equations, which arises because model 4a 
transforms any microscopic mechanism into this macroscopic 
form. 

If a mechanism obeying the equation tan(I-M)= (1-pAV) tan/ 
is followed by another mechanism obeying tan (I- AI ) = 
( 1-q A V )tan I, they will together result in tan ( I- A/) = 
( 1 -p AV ) (1-qAV) tan I -- ( 1 - (p+q) AV ) tan/. Therefore, 
until there is more specific knowledge of inclination shallowing 

Model 

TABLE 1. Summary of the Equations of the Inclination Shallowing Models 

Author(s) Equation of Model 

Equation 
Number in Text 

K 

GKRW 

BH 

AK 

Previously published models: 

[King, 1955] tan ( I- A/) = ( 1 -fI< ) tan I 
[Griffiths et al., 1960] tan ( I- A/) = ( 1 -fG ) tan ! 
[Blow and Hamilton, 1978] tan ( I- A/) = ( 1 - AV ) tan I 
[Anson and Kodama, 1987] tan ( I - A/) = ( 1 - a AV ) tan I 

Models of this study: * 

1 a: Rotating magnetic needles in rigid matrix 
lb: Rotating magnetic needles in soft matrix 
lc: Two types of magnetic grain shapes in soft matrix 
2a: Collapsing rigid matrix 
2b: Collapsing soft matrix 
3b: Random rolling of grains about horizontal axes 

tan(I-A/) = ( 1-b'AV)tanl (9) 
tan(I-A/) = (1-bAV)tanl (18) 

tan(l-A/) = (1-bcfnAV)tanl (22) 
tan(I-A/) = ( 1-bfa)tanI (37) 
tan ( I - A/) = ( 1 - b fb ) tan I (40) 
tan(I-A/) = ( 1-bfh)tanl (62) 

* The effects of model 4a, equation (73), are included in all the models of this study. The functions (nearly 
constants) b and b' are given in equations (75) and (77). 
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mechanisms in sediments, we recommend the use of an equation of 
the form 

tan(l-A/) = (1-aAV)tanl (79) 

where I is the ambient field inclination, A/ the inclination 

shallowing, AV the compaction, and a is a constant, chosen to fit 
inclination shallowing data from laboratory experiments and 
natural sediments. 

APPENDIX: SOLUTIONS TO SOME CALCULUS PROBLEMS 

Collapsing Rigid Matrix 
We want to find the exact mathematical solution to 

x/2 F(AV) = cosA0 Pf(O) dO (A1) 
'"0 

F(AV) = [1-(1-a2)3/2]/[3a 2] + 2a/3 (All) 

or written out in full with AV 

( 2 AV- AV 2 )3/2 _ 3 AV 2 + 2 AV 3 
F(AV) = 1 - (A12) 

3 - 6AV + 3AV 2 

this result is used in equation (36). 

Collapsing Soft Matrix 

We want to find the exact mathematical solution to (A1) 
assuming now that A0 can be connected to 0 and AV by 

tan(0-A0) = (1-AV) tan0 (A13) 

As before we define the variable a -- ( 1 - AV ). From equation 
(A13) we can now write 

where A0 is related to 0 and AV by cos A0 = cos [ 0- arctan ( a tan 0) ] (A14) 

sin (0-A0) = ( 1 -AV) sin 0 (A2) using now the angle difference relation, as before, we get 

and the normalized probability distribution Pf (0) is described by 

Pi(O) dO = sin OdO (A3) 

a distribution which describes a spherically random fabric flakes. 
Equation (A2) can be written with A0 isolated 

A0 = 0- arcsin((1-AV)sin0) (A4) 

We define for ease a -- ( 1 - AV ), and now we can write 

cosA0 = cos[0- arcsin(asin0)] (A5) 

and this can be split, using the angle difference relation, to yield 

cos A0 = cos 0 cos [ arctan ( a tan 0 ) ] 
+ sin 0 sin [ arctan ( a tan 0 ) ] (A15) 

This can be simplified by standard relationships between sin x, cos 
x, tan x, and arctan x [Beyer, 1984, pp. 139-140]. We are only 
interested in the first quadrant 0 _< x _< n/2, where the 
trigonometric functions are positive, so we do not have to worry 
about sign problems. We define t -= tan 0. 

Equation (A15) is now simplified to 

1 1 t at 
cos A0 = + 

•l+t2•/l+a2t 2 •/l+t 2 •/l+a2t 2 
(A16) 

or 

cos A0 = cos 0 cos [ arcsin ( a sin 0) ] 
+ sin 0 sin [ arcsin( a sin 0 ) ] (A6) 

which can be simplified to 

cos A0 = cos 0 •/ 1 - a2sin20 + a sin20 (A7) 
We can therefore write equation (A1) on the form 

F(AV) = I••cos 0 •/1-a2sin20 + a sin20] sin 0 dO (A8) 
this can be split into two integrals, and the first one simplified by 
the substitution 

cos A0 = 
(l+at 2 ) 

q] (1 + t 2) ( 1 + a2t 2) 
(A17) 

and we can write P•(O) from equation (A3) as 

sin 0 = 

•/l+t 2 
(h18) 

By getting rid of A0we have now simplified equation (A1) to 

Ix/2 F(AV) ( 1 + a tan20 ) tan 0 .... dO 

d o ( 1 + tan20) • 1 + a 2 tan20 
(A19) 

s -- •/ 1 - a2sin20 (A9) 

So we can write equation (A8) as 

F(AV) = -a -2 s 2 ds + a sin30 dO 

*'1 *' 0 

and the exact solution to equation (A1) assuming (A2) is 

(h10) 

in solving equation (A19) it is convenient to make the 
substitution 

s -= •/ 1 + a 2 tan20 (A20) 

which transforms equation (A19) to 

F(AV) = f•.oo a( s 2- (l-a)) ( S 2 - (l_a 2) )2 
d• (A21) 
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This can be solved by using standard integral tables [e.g., Beyer, 
1984, pp. 240-241, integrals 61a, 65, and 69, with b = 1, and 
m = 1]. We can now evaluate the integrals 

gl = - • -a 2 ,}2-•-a2) - 2• ,n ..... 

g2 = I1 øø ds _ 1 - a 2 g i ( s 2 - (1-a 2) )2 2 a 2 ( 1 - a 2 ) 

g3 = If; s 2 ds ( s 2 - (l_a 2) )2 

1 + a2gl 
2a 2 

(A22) 

(A23) 

(A24) 

and write the solution to equation (A21) 

F(AV) = -a ( 1 -a ) g2 + a g3 (A25) 

Written out in full, the exact mathematical solution to equation 
(A1), assuming (A13) is then 

F(AV) = + 
2 (2-AV) 

(2-AV) 2 - 1 

4 (2 - AV) 4 AV (2 - AV) 
In (A26) 

1- 4AV ( 2 - AV ) 

This result is used in equation (39). 

Initial Within-Sample Dispersion 
We want to solve 

tan ( I- A/) = 

•/2 -•/2 

cos i ( 1 + tc cos 0 ) sin ( i- Ai )dd di 

(A27) 

cosi (l+tccos0)cos(i-Ai) cosd dddi 

where 0 is related to I, i, and d through 

cos0 = sinlsini + coslcosicosd 

For convenience we define Z, and X 

(A28) 

Z m I n/2 -•/2 

cosi (l+tccosO)sin(i-Ai) dddi 
•'0 

(A29) 

X • cosi (l+tccos0)cos(i-Ai) cosd dddi 
(A30) 

•'0 

and by applying equation (A28) in (A29) and (A30) we get 

[ cos i (1 + tc sin I sin i) sin (i - Ai) ]dd di 

[ cos i (tc cos I cos i) sin (i - Ai) ] cos d dd di 
(A31) 

[cos i (1 +tcsin I sin i) cos (i- Ai)] cos d dd di 
"0 

[ cos i (tc cos I cos i) cos (i - Ai) ] cos2d dd di 
(A32) 

Integration over d from 0 to 2n is now a simple task and Z and X 
can be simplified to 

Z = 2•rtcsinl cosi sinisin(i-Ai)di (A33) 

cos I cos2i cos ( i- Ai ) di (A34) 

The integrals in equations (A33) and (A34) are over symmetric 
functions about zero and can be replaced by double the integrals 
from 0 to •/2. At this point we notice that equation (A27) will 
take the form 

tan(l-A/) = (1-F)tanl (A35) 

where 

cos i sin i sin ( i - Ai ) di 

F = 1- (A36) 

cos2i cos ( i- Ai ) di 

•'0 

Equation (A35) carries great significance: We have not yet, in this 
derivation, introduced a microscopic relation defining the 
dependence of Ai on i and e (or AV). Still we get the functional 
relationship of equation (A35). We have, in fact, shown that if the 
within-sample magnetic moments have dispersed orientations, the 
macroscopic relationship will take the form shown in equation 
(A35), independent of the form of the microscopic relationship 
between A/ and AV. We note that F is a function of e but 

independent of tc and I. 
Now we connect ( i - Ai ) to i and e by 

tan (i-Ai) = ( 1 - e) tan i (A37) 

and use the relations sin x = tan x / ( 1 + tan2x )•/2 and cos x = 
1 /( 1 + tan2x )1/2 to obtain 

sin ( i- Ai ) = ( 1 - e ) tan i / ( 1 + (1-e)2tan2i)m (A38) 
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cos ( i- Ai ) = 1 / ( 1 + (1-œ)2tan2i)1/2 

We define/• -- ( 1 - œ ), and Z' and X' 

Z' = 2 fl sin2i / ( 1 +/•2tan2i )1/2 di 
'"0 

X' -- c0s2i / ( 1 + •tan2i )1/2 di 
'"0 

(A39) 

(A40) 

(A41) 

and these give the relation tan ( I- 3d ) = (Z'/X') tan I. Equation 
(A49) is easily solved to give Z'= 2 ( 1 - œ ) / 3. However, 
equation (A50) is an elliptic integral, which can not be written in 
terms of elementary functions, but can be written in terms of the 
special functions K(k) and E(k), called the complete elliptic 
integrals of the first (K) and second (E) kind [Gradshteyn and 
Ryzhik, 1980, integral 2.583.6, p. 159]. For model la we define 
( 1 - b' œ ) -- (Z'/X'), which can be written as 

2(1-œ) 3 
( 1 -b' œ) = (A51) 

((1-œ)2-1) K(1-œ) + ((1-œ)2+1) E(1-œ) 

and these give the relation tan ( I- 3d ) = (Z'/X') tan I. Here it 
turns out to be convenient to use the substitution s-- 1 + tan2i, 
which transforms equations (A40) and (A41) to 

Z' = 4 [• ( s- 1 ) / ( s 2 A •/2 ) ds (A42) 
1 

X' = 2 1 / ( s 2 A •/2 ) ds (A43) 
1 

where A -- ( f12_ 1 ) + ( 1 - 2 • ) s + • s 2. These integrals can 
be solved using integral tables [e.g., Beyer, 1984, integrals 259 
and 261, p. 257] resulting in 

Z' = 2fi [arcsin(1-2• 2) + n/2] / (1-•2)3/2 _ 4•2 / (1_•2) (A44) 

X' = (1-2•) [arcsin(1-2•) + n/21 / (1-i•2) 3/2 + 2fi/(1-•) (A45) 

And finally we define the function b such that ( 1 - b œ ) = Z'/X', 
incorporate relationships between arcsin and arccos, and replace 
by (1-œ)toget 

(1-be) = 

2 (l-t) arccos( 1-4e+2e 2) - 4 (1-œ) 2 •/2œ-e 2 
(A46) 

-( 1-4œ +2e 2 ) arccos( 1-4œ +2e 2) + 2 (1-œ) • 2œ-e 2 
This result is used in equation (74). 

To calculate the effect of initial within-sample dispersion on 
model la, we have to start form equation (A35) and (A36), and 
instead of equation (A37), we connect ( i - Ai ) to i and œ by 

sin (i-Ai) = ( 1 - œ) sin i (A47) 

and use the relation cos x = ( 1 - sin2x )•/2 to obtain 

cos ( i - Ai ) = ( 1 - (1 - œ)2sin2i )1/2 (A48) 

As before we define/• -- ( 1 - œ ), and Z' and X' 

•/2 
Z'= 2,B • cos/ sin2i di (A49) 

•'0 

X t • 
I0 •/2 

c0s2i ( 1 - •sin2i )•/2 di (A50) 

This result is used in equation (76). 
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