Thunder and Lightning in Iceland

Haraldur Ólafsson Þórður Arason Trausti Jónsson

University of Iceland and the Icelandic Meteorological Office

Thunder and Lightning in Iceland

Climatology
Synoptic situations and origin of airmasses
Predictability

Frequency of thunder at Stórhöfði (S-coast of Iceland)

Five most intensive thunderstorms in each season 1981-2000

Winter	Origin of low level airmass	Wind veering	Advection
94-01-21	N-America	0°	60 m/s
93-02-12	N-America	20° (warm advection)	40 m/s
91-01-30	N-America	10° (warm advection)	40 m/s
89-01-11	N-America	0°	10 m/s
83-12-27	N-America	0°	20 m/s
Summer			
91-08-02	Britain/Cont.Europe	0°	10 m/s
91-07-08	Britain/Cont.Europe	0°	10 m/s
88-07-10	Britain/Cont.Europe	0°	10 m/s
84-07-11	Britain/Cont.Europe	10° (warm advection)	10 m/s
82-07-03	S-Ocean	80° (cold advection)	10 m/s
Interm. Season			
99-09-05	N-America	50° (cold advection)	10 m/s
97-09-27	N-America	10° (warm advection)	30 m/s
89-10-31	N-America	0°	50 m/s
81-09-01	Britain/SE-Ocean	0°	30 m/s
81-05-14	Britain/Cont. Europe	0°	20 m/s

IR-image 21 Jan 1994

VIS-image 2 Aug 1991

Can we predict these storms?

Numerical simulations Model: MM5 BC: ECMWF Horizontal resolution: 8km Vertical resolution 40 lev.

All

÷A.

Two winter storms and two summer storms have been simulated

Results:

The winter storms are well reproduced

The summer storms are not as well well reproduced

04018 BIKF Keflavikurflugvollur

A summer case - failure of simulation

04018 BIKF Keflavikurflugvollur

A summer case - failure of simulation

Keflavík 02.08.91 kl: 12:00 98 layer Dry SIMULATED 10A -40-20 0 20 40

Conclusions on thunder in Iceland

- Main activity in mid-winter, a secondary maximum in mid-summer
- Some interannual variability, but no clear trend in longterm frequency
- Winter storms: Arctic air advected rapidly from N-America. Organized convection.
- Summer storms: Advection from SE (Britain/Cont.Europe). Front-like structures.
- Case studies indicate that the meteorological conditions in which the winter storms form may be easier to predict than those of the summer storms