
4 Conclusions
The problem of estimating unbiased means of 
paleomagnetic inclination-only data was described 
forty years ago.
Several methods have been proposed to solve the 
problem.  Some of these methods have evaluated 
the maximum likelihood estimates.  However, these 
methods are based on various approximations and 
assumptions that turn out to be inappropriate for 
steep and dispersed data.  Unfortunately, these 
estimates are sometimes inaccurate and on average 
biased toward shallow inclinations.

Analytical cancellations of exponential elements in 
the functions of the problem are essential to 
calculate the estimates accurately.
We present a method with accurate representations 
of the functions needed to solve the problem.
The method that we present makes it possible for 
scientists to accurately calculate the maximum 
likelihood estimates of the inclination-only problem.

3 The problem and our Solution

The Maximum Likelihood Solution to Inclination-only Data 
Þórður Arason(1) and Shaul Levi(2)

(1) Veðurstofa Íslands – The Icelandic Meteorological Office, IS 150 Reykjavík, ICELAND
(2) College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA

arason@vedur.is, Shaul_Levi@msn.com

1 Abstract
The The arithmetic means of inclination-only data are known to introduce a 
shallowing bias.  Several methods have been proposed to estimate unbiased 
means of the inclination along with measures of the precision.  
Most of the inclination-only methods were designed to maximize the likelihood 
function of the marginal Fisher distribution.  However, the exact analytical form of 
the maximum likelihood function is fairly complicated, and all these methods 
require various assumptions and approximations that are inappropriate for many 
data sets.  For some steep and dispersed data sets, the estimates provided by 
these methods are significantly displaced from the peak of the likelihood function to 
systematically shallower inclinations.  The problem in locating the maximum of the 
likelihood function is partly due to difficulties in accurately evaluating the function 
for all values of interest.  This is because some elements of the log-likelihood 
function increase exponentially as precision parameters increase, leading to 
numerical instabilities.  
In this study we succeeded in analytically cancelling exponential elements from the 
likelihood function, and we are now able to calculate its value for any location in the 
parameter space and for any inclination-only data set, with full accuracy.  
Furtermore, we can now calculate the partial derivatives of the likelihood function 
with desired accuracy.  Locating the maximum likelihood without the assumptions 
required by previous methods is now straight forward.  
The information to separate the mean inclination from the precision parameter will 
be lost for very steep and dispersed data sets.  It is worth noting that the likelihood 
function always has a maximum value.  However, for some dispersed and steep 
data sets with few samples, the likelihood function takes its highest value on the 
boundary of the parameter space, i.e. at inclinations of ±90°, but with relatively well 
defined dispersion.  Our simulations indicate that this occurs quite frequently for 
certain data sets, and relatively small perturbations in the data will drive the 
maxima to the boundary.  We interpret this to indicate that, for such data sets, the 
information needed to separate the mean inclination and the precision parameter is 
permanently lost.  
To assess the reliability and accuracy of our method we generated large number of 
random Fisher-distributed data sets and used seven methods to estimate the mean 
inclination and precision paramenter.  These comparisons are described by Levi 
and Arason at the 2006 AGU Fall meeting.  The results of the various methods is 
very favourable to our new robust maximum likelihood method, which, on average, 
is the most reliable, and the mean inclination estimates are the least biased toward 
shallow values.  
Further information on our inclination-only analysis can be obtained from:  
http://www.vedur.is/~arason/paleomag

2 Mean Bias of Inclination-only Data

The "normal" distribution of three dimensional directions is the Fisher-
distribution.  By using Fisher-statistics one can obtain unbiased directional 
mean of a sample drawn from such a distribution (Fisher, Proc. R. Soc. London, 
Ser. A, 217, 295-305, 1953).  Sometimes one has only access to inclinations 
and not declinations.  Paleomagnetic directions from borecores usually lack 
declinations, but inclinations can be reliable.  Briden and Ward (Pure Appl. 
Geophys., 63, 133-152, 1966) showed that for such inclination-only data, the 
arithmetic mean is biased toward shallow inclinations.
In paleomagnetic applications this inclination shallowing bias is usually less 
than a few degrees.  For individual studies such a discrepancy is of a minor 
importance and usually well within the confidence limits of the study.  However, 
since this is a one sided bias, attempts to combine results of many studies may 
lead to errors.  Therefore, improper procedures for estimating mean inclinations 
in individual studies can seriously affect combined average estimates.
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Forty years ago Briden and Ward [1966] pointed 
out that the arithmetic mean of inclination-only data 
introduces a shallowing bias.  Furthermore, they 
derived the likelihood function assuming the 
directions follow the Fisher-distribution, and 
presented a graphical method to estimate the true 
mean inclination along with the precision parameter 
(κ).
The likelihood function includes exponential 
elements, that are very difficult to accurately 
evaluate.
Several workers have attempted to derive a 
method to calculate the maximum likelihood 
estimates of mean inclination and the precision 
[e.g., Kono, 1980; McFadden and Reid, 1982].  
Those methods make certain assumptions and 
approximations, which sometimes are 
inappropriate leading to inaccurate estimates of the 
maximum likelihood, and a bias toward shallow 
inclinations.
In this study we present a simple and robust 
method to calculate simultaneously the maximum 
likelihood estimates of the mean inclination and 
precision parameter without the assumptions and 
approximations of previous workers.

The exact mathematical form of the log-likelihood 
function and its derivatives is available.  The task is to 
accurately identify the pair of (θ, κ) that maximize the 
likelihood function.

However, there are two major obstacles in directly 
identifying the maximum:
1. There are exponential elements in the likelihood 
function that become impossible to directly evaluate, 
and attempts in ordinary programming languages will 
often lead to an overflow or very inaccurate values, even 
for ordinary paleomagnetic data.
2. The likelihood function and its derivatives include 
Bessel functions that are difficult to accurately evaluate.

Our direct solution to the maximum likelihood problem 
includes:
A. We were successful in analytically cancelling all the 
exponential terms from the log-likelihood function.
B. We use an accurate estimation of the Bessel 
functions, many orders of magnitude more accurate than 
previous attempts on the problem.
Once these obstacles are cleared, accurate calculation 
of the maximum is straight forward.

The geometry of the sphere dictates that any circularly symmetric 
distribution about a true mean will be represented by more shallow 
inclinations than steep as compared to the mean.  Arithmetic 
average of inclinations will therefore result in a too shallow estimate 
of the mean.  From Arason [1991, Fig. 5.1, p. 207].



A The Log-likelihood Function and its Derivatives
The joint density function of the Fisher distribution is

For inclination-only data we only have co-inclinations θi: θ1, ..., θN, (θ = 90° – I,
where I is inclination in degrees), which must be regarded as a random sample 
from the marginal distiribution of the Fisher-distribution

Here I0(x) is the hyperbolic Bessel function of order zero.  The likelihood function is

and the log-likelihood function is

The maximum value of the likelihood function is where the partial derivatives of the 
log-likelihood function are both zero

Here I1(x) is the hyperbolic Bessel function of first order.  By adjusting these 
equations we were able to set up two equations that can be iteratively solved.

B Evaluation of the Log-likelihood Function
The likelihood and log-likelihood functions include exponential elements that 
prevent direct evaluation of the functions for some combinations of (θ, κ).  
However, it is possible to analytically rewrite the log-likelihood function so that 
these elements need never to be evaluated.  In such a way one can evaluate 
the log-likelihood function for any combination of (θ, κ).
The first term includes the sinus hyperbolicus function (see fig), which increases 
exponentially.  This term can be written as

for κ higher than 15 the exponential term can be omitted and for values close to 
zero this can also be simplified.  The second and third terms can be simplified to

where B(x) = I0(x)/ex. By cancelling the exponential element, the Bessel 
function can be accurately calculated for any combination of (θ, κ), see box C.
The only problem with the last term is if one of the observed inclinations is 
exactly ±90°.

C Evaluation of the Hyperbolic Bessel Functions
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The hyperbolic Bessel functions, can not be expressed as a finite combination 
of elementary functions.
In order to evaluate the Bessel function, I0(x), and the ratio I1(x)/I0(x) we use 
the approximations of Press et al. (Numerical recipes, The art of scientific 
computing (Fortran version), 1989), which is based on Olver (Ch. 9 in 
Abramowitz and Stegun, Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables, eq. 9.8.1-4, 1972).  These approximations 
are five orders of magnitude more accurate than the approximations used by 
Enkin and Watson (Geophys. J. Int., 126, 495-504, 1996).
Direct evaluation of the Bessel functions is problematic because they increase 
exponentially (see figs) and we may need to evaluate the functions for very 
high values, f.ex. I0(1000) ≈ 2.5 ·10432.
Numerical inaccuracies are avoided by never directly evaluating the Bessel 
functions.  We analytically cancel their exponential elements, prior to the 
evaluation, and the ratio I0(x)/ex is numerically well behaved and takes values 
between 0.01 and 1 for the range 0 < x < 1000 (see fig).  Similarly we evaluate 
the ratio I1(x)/ex, without calculating I1(x).  The ratio I1(x)/I0(x) is then evaluated 
by calculating [ I1(x)/ex ] / [ I0(x)/ex ].



D Our Calculation of the Maximum Likelihood Solution
a. We calculate the solution of the maximum likelihood problem by iteration in a 
similar fashion as Enkin and Watson (1996).  As an initial guess of θ and κ, we use the 
arithmetic mean and the inverse variance of the co-inclinations (θ = 90° - I).

In calculating κ we need to use θ in radians.  Then we iterate alternatively for new 
estimates of θ and κ through the following two equations:

Usually, except for steep and dispersed data sets, the pair (θ, κ) converges in a few 
iterations (<10).  We repeat this process 10 000 times unless the angular difference 
between successive iterations becomes less than 0.000 001°.  For the solution pair we 
evaluate the log-likelihood function.
b. Then we repeat the iteration process from another intitial guess by halfing the initial 
values of θ and κ, used in (a).  When this second process converges we calculate the 
value of the log-likelihood function.
c. Now we locate the maximum on the edge, I = ±90°, from the initial value

iterating through

Estimation of κ on the edge usually converges very fast.  At the maximum on the edge 
we evaluate the value of the log-likelihood function.
d. Finally, we compare the solutions in a, b, and c and select the pair (θ, κ), which 
gives the highest value of the log-likelihood function.

F Fishers Numerical Example
In this example we use the paleomagnetic data used in a numerical example 
by Fisher (1953).  His nine inclinations were: 66.1, 68.7, 70.1, 82.1, 79.5, 
73.0, 69.3, 58.8, and 51.4.
The following list shows the evolution of the solution through our iteration 
process.  We start with the initial guess of the arithmetic mean I = 68.78° (θ =
21.22°), κ = 36.42.  For this pair the value of the log-likelihood function is h =
3.83.
Iter  Theta       Kappa             Log-likelihood

0   21.22       36.42             3.83
1   18.93       35.59             4.12
2   18.57       34.75             4.129
3   18.44       34.13             4.132
4   18.36       33.68             4.1336
5   18.31       33.36             4.1344
10   18.189      32.66             4.13533
20   18.153      32.467            4.1353855
30   18.15129    32.4554           4.1353857157
40   18.151171   32.45473          4.135385716284
44   18.151166   32.45471          4.1353857162853

After 44 iterations the angular difference between successive steps was less 
than our limit (0.000 001°).  The solution indicates that I = 71.85°.
Now we try to start the iteration from another initial values and we select half 
the initial values of the first process.
Iter  Theta       Kappa             Log-likelihood

0   10.61       18.21             3.79
1   11.96       17.99             3.87
2   12.73       18.45             3.89
3   13.35       19.16             3.92
4   13.93       20.00             3.94
5   14.49       20.96             3.97
10   16.77       26.58             4.09
20   18.06       31.94             4.1351
30   18.146      32.424            4.1353846
40   18.1508     32.4529           4.135385712
50   18.151145   32.45459          4.13538571627
57   18.151161   32.45468          4.1353857162848

After 57 iterations the angular difference between steps was less than our 
limit.  The solution indicates again that I = 71.85°.  We note that the value of 
the log-likelihood function is practically the same, although slightly lower.
Now we find the maximum value on the edge, I = +90°.
Iter  Theta       Kappa             Log-likelihood

0   0.00        12.651665098      3.76
1   0.00        12.651665094914   3.76
2   0.00        12.651665094914   3.76

However, the value of the log-likelihood function on the edge is considerably 
lower than for our solutions in the interior.
The highest value of the log-likelihood function is from the first iteration 
process and our maximum likelihood solution is I = 71.85°, κ = 32.45.

E The Physical Meaning of the Edge Solution
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For dispersed and steep data the likelihood function sometimes has its 
maximum value on the edge (I = ±90°).
The probability distribution for these cases is such that similar distributions 
may originate from a range of pairs of true inclinations and precision 
parameters.  The fig. on the right shows an example of this effect, where 
three distributions of different pairs of (θ, κ) are almost identical.  For such 
steep and dispersed true inclinations it becomes impossible to extract unique 
information on both true inclination and precision parameter from a finite set 
of observed inclinations, and any attempt to do so will depend critically on 
the assumptions of the calculation method.
In our maximum likelihood method we make use of this “discrepancy”.  A 
mean inclination on the edge, i.e. I = ±90°, indicates that a unique solution 
does not exist and the information to separate inclination and precision 
parameter is permanently lost.
However, such a solution indicates that the mean inclination is probably 
“steep” and the maximum likelihood estimate of precision parameter sets an 
upper limit to the true value.

The inclination-only distribution for three combinations of the true values (I, κ).  
The values are (I = 75°, κ = 8.6), (I = 80°, κ = 10), and (I = 85°, κ = 12).  It is 
not important in this context to identify the curves.  From Arason (1991, Fig. 
5.12, p. 266).


