
Geophys. J. Int. (2010) 182, 753–771 doi: 10.1111/j.1365-246X.2010.04671.x

G
JI

G
eo

m
ag

ne
ti
sm

,
ro

ck
m

ag
ne

ti
sm

an
d

pa
la

eo
m

ag
ne

ti
sm

Maximum likelihood solution for inclination-only data
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S U M M A R Y
We have developed a new robust maximum likelihood method for estimating the unbiased
mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean
of inclination-only data is known to introduce a shallowing bias. Several methods have been
introduced to estimate the unbiased mean inclination of inclination-only data together with
measures of the dispersion. Some inclination-only methods were designed to maximize the
likelihood function of the marginal Fisher distribution. However, the exact analytical form of
the maximum likelihood function is fairly complicated, and all the methods require various
assumptions and approximations that are often inappropriate. For some steep and dispersed
data sets, these methods provide estimates that are significantly displaced from the peak of the
likelihood function to systematically shallower inclination. The problem locating the maximum
of the likelihood function is partly due to difficulties in accurately evaluating the function for all
values of interest, because some elements of the likelihood function increase exponentially as
precision parameters increase, leading to numerical instabilities. In this study, we succeeded in
analytically cancelling exponential elements from the log-likelihood function, and we are now
able to calculate its value anywhere in the parameter space and for any inclination-only data
set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function
with desired accuracy, and locate the maximum likelihood without the assumptions required
by previous methods. To assess the reliability and accuracy of our method, we generated large
numbers of random Fisher-distributed data sets, for which we calculated mean inclinations
and precision parameters. The comparisons show that our new robust Arason–Levi maximum
likelihood method is the most reliable, and the mean inclination estimates are the least biased
towards shallow values.

Key words: Numerical approximations and analysis; Probability distributions.

1 I N T RO D U C T I O N

The Fisher distribution is the analogy to the normal distribution for a
population of spherically distributed unit vectors. It was first derived
by Langevin (1905) as the natural distribution for the alignment of
an assemblage of identical magnetic moments of a paramagnetic gas
in a uniform external magnetic field. Using Fisher statistics, one can
obtain an unbiased estimate of the true mean direction of a sample
drawn from such a distribution (Fisher 1953). The directions are
often recorded as declinations (horizontal azimuth) and inclinations
(the angle from the horizontal). In some studies only the inclinations
are available. For example, paleomagnetic directions from borecores
usually lack declinations, although the measured inclinations can
reliably record past geomagnetic fields.

Briden & Ward (1966) showed that for inclination-only data,
the arithmetic mean is biased towards shallow inclinations. Fig. 1

shows that the geometry of the sphere dictates that any isotropic
distribution will be represented by more shallow inclinations than
by steep inclinations when compared to the true mean.

In paleomagnetic applications the inclination-shallowing caused
by using the arithmetic mean is usually less than a few degrees.
For individual studies such a discrepancy is not very important and
is usually well within the confidence limits of the study. However,
because this is a one-sided bias, attempts to combine results of many
studies may lead to more significant, systematic errors. For example,
studies of long-term non-dipole components of the geomagnetic
field require averaging the mean inclinations of many studies which
might lead to a long-term effect of 1–2◦. Improper procedures for
estimating the mean inclinations in individual studies can seriously
affect such estimates. In Fig. 2, we show contours of the approximate
inclination-bias for a Fisher-distributed sample of inclination-only
data.
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Figure 1. The geometry of the sphere dictates that any isotropic distribution
about a true mean will be represented by more shallow than steep inclinations
as compared to the mean. This illustration shows that the area of shallow
inclinations (dark shading) is greater than the area represented by the steep
inclinations (light shading). Arithmetic mean of inclination-only data will
therefore result in a too shallow estimate of the mean. From Arason (1991,
fig. 5.1, p. 207).
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Figure 2. Contours of the approximate inclination shallowing of the mean
for the arithmetic mean and ordinary standard deviation of a Fisher-
distributed sample of inclination-only data.

Briden & Ward (1966) derived the marginal distribution for
inclination-only data and its likelihood function. For a known dis-
persion of the distribution one can, in principle, make a simple
correction for the inclination bias. The task is to simultaneously
identify the mean inclination and the precision parameter, which is
a measure of the spread of the distribution. Briden & Ward (1966)
presented a graphical method to estimate the maximum likelihood
mean inclination and precision parameter. Although the method is
quite simple to use, it would be useful to be able to calculate the
values directly from the observed data on a computer.

Harrison (1974) made a correction for the inclination-bias by
comparing the standard deviation of the inclinations to those of ran-
domly generated Fisher-distributed directions with a known mean
and dispersion. Matching the arithmetic mean inclination and stan-
dard deviation of the randomly generated data set to the observed
data, he estimated the mean inclination and precision parameter.
Another early method assumes that the dispersion of the data is
related to secular variation of the geomagnetic field, and knowledge
of the field’s dispersion is used to constrain the true precision pa-

rameter; a correction term is then applied to the arithmetic mean
inclination (Peirce 1976; Cox & Gordon 1984). This method is only
applicable to paleomagnetic results from lava flows, which represent
spot recordings of the geomagnetic field, and where each inclination
represents a single flow (also, care must be taken that the data ade-
quately represent the spectrum of geomagnetic secular variation.).
Clark (1983, 1988) studied the properties of the marginal Fisher-
distribution and biases of various statistics. Westphal et al. (1998)
suggested a graphical method to estimate the mean inclination and
verify that the data are Fisherian.

In the early 1980s, two different numerical methods (Kono 1980;
McFadden & Reid 1982) claimed to solve the inclination-only prob-
lem outlined by Briden & Ward (1966). Kono (1980) equated the
expectation values of cos θ and cos2θ of the distribution to the data,
where θ is the co-inclination (θ = 90◦ − I) and I is the inclination.
In principle, this is a method of moment estimation and is asymp-
totically unbiased as the sample size increases. For some data sets
of steep and dispersed inclinations, the Kono method gives no solu-
tion. McFadden & Reid (1982) criticized the Kono method, both on
theoretical grounds and because it resulted in obviously biased esti-
mates for steep and dispersed inclinations. They suggested instead
to solve the maximum likelihood problem. As they were unable to
solve the exact formulas, they made some simplifications. Unfortu-
nately, there was an error in one of their key equations (McFadden
& Reid 1982, eq. 40, p. 317). Although this error was modified by
several workers, some paleomagnetists are still using the erroneous
original method, and we are not aware of a published correction
to the method. An outline of the McFadden–Reid method can be
found in a book where the authors corrected the equation without
mentioning that it is different from the original work (McElhinny
& McFadden 2000, eq. 3.2.32, p. 97). Even with the correction,
the McFadden–Reid method is based on approximations that are
inappropriate for dispersed steep inclinations, leading to inclination
biases.

Both the Kono and McFadden–Reid methods gained popularity in
paleomagnetism. The McFadden–Reid method gives results which
are almost identical to the arithmetic mean, and it should not be
used in its original form. Both the modified McFadden–Reid and the
Kono methods give reasonable results for true inclinations below
60◦, provided the precision parameter is greater than 10 (Arason
1991; Arason & Levi 1995; Levi & Arason 2006).

Enkin & Watson (1996) presented a new approach. They
weighted the likelihood function with a Bayesian factor. This
weighting gives better constraints for solutions of very dispersed
and steep inclinations. They presented three approaches depend-
ing on the dispersion and steepness of the data: arithmetic mean,
Gaussian estimate and marginal likelihood. Enkin & Watson (1996)
used better approximations to the Bessel functions than McFadden
& Reid (1982).

These methods use various assumptions and approximations that
turn out to be inappropriate and lead to biases for many data sets.
In this study, we describe a new method for directly evaluating
the maximum likelihood estimates of the mean inclination and the
precision parameter. Similar to previous studies for estimating the
mean inclination of inclination-only data, we assume that the direc-
tions are Fisher-distributed. We also discuss the effects when the
directions are not Fisherian. Evaluation of the likelihood function
and its derivatives is problematic. For ordinary paleomagnetic data,
the direct evaluation of these functions includes exponential terms
that can potentially lead to overflow in any ordinary programming
language. We were successful in analytically cancelling these expo-
nential terms from the likelihood functions, and, using more detailed
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computation of the Bessel and other functions, we are now able to
accurately calculate the location of the maximum of the likelihood
function. The new Arason–Levi method is robust, and it gives accu-
rate maximum likelihood estimates of the mean inclination and pre-
cision parameter for any data set. Extensive comparisons between
the various methods using randomly generated, Fisher-distributed
data sets favour our method.

2 T H E L I K E L I H O O D F U N C T I O N

The joint density function of the Fisher distribution is

g(θ, ϕ) =
(

κ sin θ

4π sinh κ

)
exp[κ cos θ0 cos θ

+ κ sin θ0 sin θ cos(ϕ − ϕ0)], (1)

where κ is the precision parameter describing the concentration of
the distribution, θ is the angle from the vertical down (θ = 90◦ −
I , where I is inclination) and ϕ is the azimuthal angle, and (θ 0, ϕ0)
represents the true mean direction. The derivation of the likelihood
function and its derivatives, presented here, is similar to previous
analyses of inclination-only data (Briden & Ward 1966; Kono 1980;
McFadden & Reid 1982; Clark 1983; Enkin & Watson 1996).

For inclination-only data of sample size N , we only have the
observed co-inclinations θ i: θ1, . . . , θN , and not the azimuths, and
the data must be regarded as a random sample from the marginal
distribution of eq. (1)

f (θ ) =
∫ 2π

0
g(θ, ϕ) dϕ

=
(

κ sin θ

2 sinh κ

)
exp[κ cos θ0 cos θ ]I0(κ sin θ0 sin θ ), (2)

where I0(x) is the hyperbolic Bessel function of order zero, also
called the modified Bessel function of first kind and order zero.

It is worth noting that the bias in the arithmetic mean inclination
can be calculated by

�I =
∫ π

0
θ f (θ ) dθ, (3)

where �I is the inclination bias and f (θ ) is from eq. (2). This bias
was calculated numerically for selected values of κ , shown in Fig. 3.

The likelihood function is

H (θ, κ) =
N∏

i=1

f (θi )

=
( κ

2 sinh κ

)N
N∏

i=1

sin θi exp(κ cos θ cos θi )I0(κ sin θ sin θi )

(4)

and the log-likelihood function is

h(θ, κ) = ln[H (θ, κ)]

= N ln
[ κ

2 sinh κ

]

+
N∑

i=1

(κ cos θ cos θi + ln[I0(κ sin θ sin θi )])

+
N∑

i=1

ln[sin θi ]. (5)

The likelihood function H is always positive for 0 ≤ κ , 0◦ ≤ θ ≤
180◦, 0◦ < θ i < 180◦. Because ln(x) is a monotonically increasing

Figure 3. The inclination shallowing of the mean resulting from the arith-
metic mean of inclination-only data versus the true inclination for Fisher-
distributed data. Values of the precision parameter κ are 10, 20, 40 and 100.
Expanded scale is shown on the lower panel. For high κ or low inclination
this effect is not very serious. If κ were known, one could apply a simple cor-
rection to arithmetic means of inclination-only data. However, κ is usually
not known and one needs to estimate κ and I simultaneously. From Arason
(1991, fig. 5.2, p. 209).

function, for x > 0, both functions H and h have maximum values
at the same location (θ , κ), where

∂h

∂θ
= 0 and

∂h

∂κ
= 0, (6)

∂h

∂θ
= −κ sin θ

N∑
i=1

cos θi

+ κ cos θ

N∑
i=1

(
sin θi

[
I1 (κ sin θ sin θi )

I0 (κ sin θ sin θi )

])
= 0, (7)

∂h

∂κ
= N/κ − N coth κ + cos θ

N∑
i=1

cos θi

+ sin θ

N∑
i=1

(
sin θi

[
I1 (κ sin θ sin θi )

I0 (κ sin θ sin θi )

])
= 0, (8)

where I1(x) is the hyperbolic Bessel function of order one.
There is a distinct possibility that the maximum occurs at the

boundary (θ = 0◦ or 180◦), without satisfying eq. (6). Numerical
simulations show that this is sometimes the case. Therefore, we are
also interested in the κ that maximizes the likelihood function at
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the boundary

∂h

∂κ
= N/κ − N coth κ + cos θ

N∑
i=1

cos θi = 0, (9)

coth κ − 1/κ = L(κ) = cos θ
1

N

N∑
i=1

cos θi , (10)

where L(κ) is the Langevin function, and cos θ = ±1 for θ = 0◦ or
180◦.

Although it is probably never the case, we finally consider the
possibility that the maximum is on the other boundary, κ = 0. This
represents a case of completely (and exactly) random directions.
See Appendix A for calculating the log-likelihood function for this
case. On this boundary the function is independent of θ and has the
value

h(θ, κ = 0) = −N ln[2] +
N∑

i=1

ln [sin θi ]. (11)

3 E VA LUAT I O N O F E S S E N T I A L
F U N C T I O N S

Problems with previous methods are often caused by the rather poor
approximations of some of the functions needed to calculate the
likelihood function and its derivatives. Also, some of the methods
require somewhat ad hoc approaches for different data sets. To be
consistent, we use the same method for all data sets. In addition,
we use the most accurate calculations available for determining
the likelihood function and its derivatives to prevent introducing
artificial effects into the solution. Moreover, we do not want to
arbitrarily restrict the iteration process from some undesired region
of the parameter space (θ , κ). Our results show that we can calculate
the likelihood function and its derivatives with desired accuracy for
all regions of the parameter space.

The hyperbolic Bessel functions, I0(x) and I1(x) cannot be ex-
pressed as a finite combination of elementary functions. Some pre-
vious studies of the inclination-only problem used crude approx-
imations of the functions, leading to inaccurate estimates of the
mean inclination. Direct evaluation of the Bessel functions is prob-
lematic because they increase exponentially, and we may need to
evaluate the functions for very high values, for example I0(1000) ≈
2.5 × 10432. Such direct evaluation of the functions will lead to
inaccurate results or overflow problems in any ordinary computer
programming language for some real paleomagnetic data sets. As
shown in Appendix A, these functions can be accurately evaluated
for any combination of the parameters (κ , θ , θ i).

In Appendix A, we calculate the Bessel function, I0(x), and the
ratio I1(x)/I0(x) using the approximations of Press et al. (1989)
and Olver (1972, eqs 9.8.1–4). To avoid inaccuracies and overflow
problems due to the exponential behaviour of the functions, we
define the functions B(x) and R(x)

B(x) = I0(x)/ex , (12)

R(x) = I1(x)/I0(x) = I1(x)/ex

I0(x)/ex
. (13)

In Appendix A, we show that the functions B(x) and R(x) can be
accurately calculated for all values of x without ever evaluating the
exponential element. For 0 ≤ x, the functions take values in the range
0 < B(x) ≤ 1 and 0 ≤ R(x) < 1. Although, Enkin & Watson (1996)
use a better approximation to the Bessel functions than McFadden &

Figure 4. The functions B(x) and R(x) are easily calculated for any value of
x. They are used to evaluate the hyperbolic Bessel functions I0(x)/ex = B(x)
and I1(x)/I0(x) = R(x).

Reid (1982), their approximation may still give rise to inaccuracies
up to 3.7 per cent (|ε| > 0.02). Our approximations to the Bessel
functions are many orders of magnitude more accurate, for example
error of our B(x) is always |ε| < 2 × 10−7. Fig. 4 shows the functions
B(x) and R(x).

Eq. (8) includes a hyperbolic cotangent term, coth κ . Our rep-
resentation of the hyperbolic cotangent function is shown in Ap-
pendix A.

We evaluate the log-likelihood function h(θ , κ) of eq. (5) for any
value 0 ≤ κ and 0◦ ≤ θ ≤ 180◦ for any given data set of θ i, i =
1, . . . , N .

h(θ, κ) = N ln
[ κ

2 sinh κ

]

+
N∑

i=1

(κ cos θ cos θi + ln[I0(κ sin θ sin θi )])

+
N∑

i=1

ln [sin θi ]

= A1 + A2 + A3. (14)

The first term (A1) can be calculated for any value of κ , by a careful
choice of approximations depending on κ . The exponential element
of the Bessel function in the second term (A2) can be analytically
cancelled by using the function B(x) of eq. (12).

A2 =
N∑

i=1

(κ cos θ cos θi + ln[exp(κ sin θ sin θi )B(κ sin θ sin θi )]),

(15)

=
N∑

i=1

(κ cos(θi − θ ) + ln[B(κ sin θ sin θi )]). (16)
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For any given data set, the last term (A3) of eq. (14) is a constant
and will therefore not affect the location of the maximum of the
likelihood function. There is a problem if one of the observed values
is vertical, that is θ i = 0◦ or 180◦ (ln 0). Otherwise, A3 can directly
be calculated. The details of accurately evaluating the log-likelihood
function is shown in Appendix A.

4 O U R M E T H O D O F L O C AT I N G
T H E M A X I M U M

Similar to the Gaussian estimates of Enkin & Watson (1996), we
take the arithmetic mean of the co-inclinations as our initial guess
for θ

θ̂0 = θ̄ = 1

N

N∑
i=1

θi (17)

and the inverse variance of the co-inclinations as our initial guess
for κ .

κ̂0 =
(

1

N − 1

N∑
i=1

(
θi − θ̄

)2

)−1

, (18)

where the θs are in radians. Arranging eq. (7), we iterate θ̂ j to the
next θ̂ j+1, using κ̂ j as our best estimate of κ

tan θ̂ j+1 =

N∑
i=1

(
sin θi

[
I1(κ̂ j sin θ̂ j sin θi )

I0(κ̂ j sin θ̂ j sin θi )

])
N∑

i=1
cos θi

. (19)

In evaluating the Bessel function ratio I1(x)/I0(x), we use the func-
tion R(x), see eq. (13) and eqs (A20) and (A21) in Appendix A.

From eq. (8), we iterate κ̂ j to the next κ̂ j+1, using θ̂ j+1 from
eq. (19) as our best estimate of θ

κ̂ j+1 =
(

coth κ̂ j − 1

N

N∑
i=1

{
cos θ̂ j+1 cos θi

+ sin θ̂ j+1 sin θi

[
I1(κ̂ j sin θ̂ j+1 sin θi )

I0(κ̂ j sin θ̂ j+1 sin θi )

]})−1

. (20)

As for eq. (19), we use R(x) to calculate the Bessel function ratio,
and our approximations for the hyperbolic cotangent are shown in
Appendix A, eqs (A23)–(A25).

Maximum values on the boundary (θ = 0◦ or 180◦) are found by
iterating from an initial guess of eq. (18) using eq. (21).

κ̂ j+1 =
(

coth κ̂ j − cos θ
1

N

N∑
i=1

cos θi

)−1

. (21)

As in eq. (20), we use the approximations for the hyperbolic cotan-
gent shown in Appendix A.

Alternating between eqs (19) and (20), a stable pair (θ̂ , κ̂) is
typically located at the maximum of the likelihood function, usually
in fewer than 10 iterations. When the maximum is close to the
boundary (θ ≈ 0◦ or 180◦), convergence is much slower, and more
than 100 iterations might be required. In such cases, the value of
the log-likelihood function is often maximum at the boundary, and
it is calculated using eq. (21); the result is compared to the value in
the interior, and the highest value is chosen.

Estimates of the angular standard deviation, θ 63, are calculated
using

cos θ63 = 1 + ln(1 − 0.63(1 − e−2κ ))

κ
, (22)

and we estimate the 95 per cent confidence limits of the mean
inclination, α95, using (Fisher 1953; Kono 1980, eq. 12):

cos α95 = 1 − N − 1

N (κ − 1) + 1
(201/(N−1) − 1). (23)

5 O U T L I N E O F O U R M E T H O D

Our method of locating the maximum includes the following five
steps:

1. We select an initial value using eqs (17) and (18). Then we
iterate using alternatively eqs (19) and (20) until the solution of
successive iterations changes very little. Both inequalities 24 and 25
must be simultaneously satisfied to terminate the iteration process

�θ = |θ̂ j+1 − θ̂ j | < 0.000 001◦ (24)

and

�κ/κ =
∣∣∣∣ κ̂ j+1 − κ̂ j

κ̂ j+1

∣∣∣∣ < 0.000 001. (25)

Once the iteration terminates at (θ̂ , κ̂ ), we calculate the value of the
log-likelihood function h1 = h(θ̂ , κ̂) by the method described in
Appendix A. If the calculations do not converge (i.e. inequalities 24
and 25 are not satisfied) in 10 000 iterations, a convergence problem
is identified. The extremely small changes defined by inequalities 24
and 25 are not important for most data sets, but may be significant
for near vertical solutions.

2. It is possible that there is no local maximum in the interior of
the parameter space, and that the likelihood function is maximum at
one of its boundaries, that is: θ = 0◦, θ = 180◦ or κ = 0. For the first
two boundaries, the initial guess of the precision parameter comes
from eq. (18). Then we iterate through eq. (21) until the condition
of inequality 25 is satisfied. Once the iteration terminates at κ̂ , we
calculate the value of the log-likelihood function h2 = h(0◦, κ̂),
and h3 = h(180◦, κ̂) by the method described in Appendix A.
Finally, we set κ̂ = 0 (and θ̂ = 90◦) and calculate the value of the
log-likelihood function on this boundary by eq. (11), h4 = h(90◦,
0). Although the maximum is probably never on this boundary
(κ = 0)—in our numerical comparison it was never the case—we
calculate this value for completeness.

3. We compare the four values of the log-likelihood function
from steps 1 and 2: h1, h2, h3 and h4. The solution (θ̂ , κ̂ ) that gives
the highest value is chosen as our maximum likelihood solution.

4. To check the robustness of the chosen solution, we evaluate the
log-likelihood function in a 16-point oval array around our solution,
where θ̂−0.01◦ ≤ θ ≤ θ̂+0.01◦ and κ̂−0.1 per cent ≤ κ ≤ κ̂+0.1
per cent (Fig. 5). If the chosen solution does not have the highest
value compared to the 16 surrounding points, a robustness flag is
raised.

5. Finally, we calculate estimates of the angular standard devia-
tion, θ 63, and 95 per cent confidence limits of the mean inclination,
α95, using eqs (22) and (23).

6 C O N V E RG E N C E A N D RO B U S T N E S S
O F O U R M E T H O D

To assess the robustness of our method, we generated 368 000 ran-
dom Fisher-distributed data sets. The data sets had 23 true incli-
nations, I =: −90◦, −85◦, −80◦, −75◦, −70◦, −60◦, −50◦, −40◦,
−30◦, −20◦, −10◦, 0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 75◦, 80◦,
85◦ and 90◦. Precision parameters, κ , were assigned values of 10,
20, 40 and 100. The number of samples in each data set, N , was 5,
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+0.1%

^

+0.01°
θ^

Figure 5. The scheme of verifying the robustness of our maximum like-
lihood method. For our maximum likelihood estimate (θ̂ , κ̂) (filled circle),
we evaluated the log-likelihood function at 16 surrounding points (open
circles) to verify that our estimate is at least a local maximum at this level
of accuracy (θ̂ ± 0.01◦, κ̂ ± 0.1 per cent).

10, 20 and 100. For each of these 23 × 4 × 4 = 368 combinations,
we generated 1000 random Fisher-distributed data sets. We use a
method very similar to that of Fisher et al. (1987, p. 59). Our method
is described in detail by Arason (1991).

For each of the 368 000 inclination-only data sets, we calculated
the maximum likelihood solution pair (θ̂ , κ̂) by the method outlined
in the previous section. We encountered 857 cases of convergence
problems or robustness failure. This compares to 28 203 and 52 843
cases of a no-solution by the Kono and McFadden–Reid methods, re-
spectively. Convergence problems in step 1 of our method occurred
in fewer than 0.2 per cent of the data sets. In all these cases, the
solution was approaching the vertical; usually θ̂ < 2◦ (or >178◦),
the convergence was very slow; and the conditions of inequalities
24 and 25 were not satisfied. In the majority of these cases, the
solution still fulfilled our robustness check. One can employ a more
sophisticated algorithm to handle these exceptional cases, but for
practical reasons we chose to keep our algorithm simple.

For steep and dispersed inclinations, the maximum value of the
log-likelihood function is frequently on the boundary of the param-
eter space. For data sets where the true inclination was ±70◦, ±80◦

and ±90◦, this happened in 5 , 17 and 28 per cent of the cases,
respectively.

For each solution, we evaluated the log-likelihood function in
an array around the solution pair shown in Fig. 5. Although this
check does not guarantee that the iteration process has converged
to the maximum, it should identify cases where the process went
astray. Compared with the surrounding array, our solution was at
the maximum value of the log-likelihood function in over 99.95 per
cent of the 368 000 data sets. This check indicates that the solution
is probably accurate to θ ± 0.01◦ and κ ± 0.1 per cent.

Therefore, we are confident that, at least for κ > 10 and N > 5, our
method of locating the maximum likelihood solution is extremely
robust.

7 U N I Q U E N E S S O F N E A R V E RT I C A L
S O LU T I O N S

For dispersed and steep data, the likelihood function sometimes has
its maximum value on the boundary of the parameter space, that is
a vertical solution (I = ±90◦).

Figure 6. The distribution from eq. (2) of observed inclinations for three
combinations of the true values (I true, κ). The values are (I true = 75◦, κ =
8.6), (I true = 80◦, κ = 10), and (I true = 85◦, κ = 12) (it is not important
in this context to identify the curves). For these steep true inclinations and
low κ it becomes impossible to extract information on both I true and κ from
a finite set of observed inclinations, and any attempt to do so will depend
critically on the assumptions of the calculation method. From Arason (1991,
fig. 5.12, p. 266).

The probability distribution for these cases is such that similar
distributions may originate from a range of pairs of true inclinations
and precision parameters. Fig. 6 shows an example of this effect,
where three distributions of different pairs of (θ , κ) are almost iden-
tical. For such steep and dispersed true inclinations it is impossible
to extract unique information on both the true inclination and pre-
cision parameter from a finite set of observed inclinations, and any
attempt to do so will depend critically on the assumptions of the
calculation method.

Therefore, we conclude that a mean inclination estimate on the
edge, that is I =±90◦, indicates that a unique solution does not exist,
and in the absence of declination data the information to separate
inclination and precision parameter is permanently lost. However,
such a solution indicates that the true inclination is probably steep
and the estimate of the precision parameter is likely to be a lower
limit to the true value. To establish limits on the likely range of the
true inclination for such steep and dispersed cases, one can use the
single-parameter marginal likelihood method of Enkin & Watson
(1996) to estimate a confidence interval of the inclination.

8 N U M E R I C A L E X A M P L E

As sample data, we use the paleomagnetic results analysed in nu-
merical examples by Fisher (1953) and Briden & Ward (1966),
listed in Table 1. The paleomagnetic samples were obtained by Jan

Table 1. Nine specimens from an Icelandic lava flowa.

Specimen number Declination (◦) Inclination (◦)

631 343.2 66.1
632 62.0 68.7
633 36.9 70.1
634 27.0 82.1
635 359.0 79.5
636 5.7 73.0
642A 50.4 69.3
643A 357.6 58.8
644 44.0 51.4
aFrom Fisher (1953, Table 1, p. 304).
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Table 2. Different methods used to estimate directional data statistics.

Mean Mean Precision 95 per cent
Method declination (◦) inclination (◦) parameter confidence limits (◦)

Arithmetic mean 22.87 68.78 36.42 7.48
Fisher (1953) 24.27 70.89 35.08 8.81

Inclination-only

Briden & Ward (1966) – 72 33 –
Kono (1980) – 71.99 31.64 9.29
McFadden & Reid (1982)

Original – 68.79 34.62 9.25
Modified – 70.95 34.62 +7.08, −11.40a

Enkin & Watson (1996)
Gaussian estimate – 71.87 25.13 7.47
Marginal likelihood – 70.88 (26.88) +13.96, −6.99a

Direct maximum likelihood
Mathematica – 71.85 32.45 –

Arason and Levi method of this study – 71.85 32.45 9.17
aConfidence intervals not symmetric about the mean.

Hospers from the 1947 to 1948 lava flow of the Hekla volcano in
Iceland (64.0◦N, 19.7◦W). In Table 2, we analyse these data using
several methods. To identify small differences between the meth-
ods, we show the results with an accuracy of 0.01◦. First, we show
the arithmetic mean of the inclinations, declinations and a 95 per
cent confidence limits on the mean inclination assuming normal
distribution. Then we present the Fisher statistics estimates (Fisher
1953).

Using only the inclinations in Table 1, we calculate the mean
inclination shown in Table 2 using the following methods: (1) The
graphical estimate of Briden & Ward (1966, p. 137); (2) the estimate
from Kono (1980); (3) estimates based on the methods of McFadden
& Reid (1982), as originally published and subsequently modified;
(4) estimates by Enkin & Watson (1996), both the Gaussian es-
timates and the single-parameter marginal likelihood method; we
use the corresponding Gaussian estimate of the precision parame-
ter because the marginal likelihood method has no estimate of the
precision; (5) we then show a direct evaluation by the comprehen-
sive mathematical software package, Mathematica; (6) finally, we
show the Arason–Levi estimate following the method described in
this study. Details of the convergence to our solution are shown in
Appendix B.

The bivariate estimate of 95 per cent confidence limits of the
Fisher statistics is not directly comparable to the other univariate
estimates. Note also that the original McFadden–Reid method gives
essentially the same mean inclination as the arithmetic mean.

Fig. 7 shows results of various methods for this particular numeri-
cal example, demonstrating that the Arason–Levi method accurately
evaluates the maximum likelihood estimates for these inclination-
only data.

9 C O M PA R I S O N S T O P R E V I O U S
M E T H O D S

To assess the reliability and accuracy of the inclination-only meth-
ods, we used the 368 000 randomly generated Fisher-distributed
data sets to estimate mean inclinations and precision parameters.
For these data sets we calculated the Fisher mean, also using the de-
clinations. For inclination-only data, the mean was calculated using
the following methods: arithmetic mean; Kono (1980); McFadden
& Reid (1982), both their original and modified methods; Enkin &

25

30

35

40

45

68 69 70 71 72 73 74

Inclination, I (°)

Figure 7. Contours of the log-likelihood function for the inclination data
in Table 1, and results of various methods to identify its peak: black cross
represents the arithmetic mean; open circle with error bars the Briden–Ward
graphical method; filled circles McFadden–Reid, both their original method,
close to the arithmetic mean, and the modified method; square the results
of the Kono method; the Enkin–Watson estimate is not shown because they
are not solving for this function; their estimate would be at the bottom of the
graph; Finally, the red cross is obtained by the Arason-Levi method of this
study, which we claim to represent an accurate estimate of the maximum
likelihood.

Watson (1996); finally, we obtained maximum likelihood estimates
by our robust technique.

Especially for cases of steep and dispersed data, the estimates
provided by the previous methods are often displaced from the
true peak of the likelihood function to systematically shallower in-
clinations. Moreover, mean inclination estimates by the original
McFadden–Reid statistics, still used by some paleomagnetists, are
nearly identical to the arithmetic mean; this method should be aban-
doned.

In Figs 8–10, we compare the distributions of 1000 estimates for
one particular combination of the 368 cases, having true inclination,
I = 70◦, precision parameter, κ = 20, and sample number, N =
100. In scatter plots of Fig. 8, we show the distribution of the (I , κ)
estimates for seven methods. The true mean (I = 70◦, κ = 20) is
shown as a large cross, and each of the 1000 estimates is marked
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Figure 8. The distribution of mean inclination and precision parameter estimates for 1000 random Fisher-distributed data sets where I = 70◦, κ = 20, N =
100.

as a single dot. Displacement of the cloud of dots from the cross
could indicate that something is wrong. The same data are shown
in Figs 9 and 10 as histograms of the estimated mean inclinations
and precision parameters.

Figs 8–10 show that the results of the Fisher-statistics (with de-
clinations) are clustered symmetrically about the true mean. This is
expected when both inclinations and declinations are known, and the
Fisher-analysis should result in unbiased means. This indicates that
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Figure 9. The distribution of 1000 mean inclination estimates for I = 70◦, κ = 20, N = 100.

the process of generating the Fisher-distributed random data sets
is correct. The inclination means of the 1000 Fisher distributions,
using the various methods, are shown in Table 3, which lists the
arithmetic means for the 1000 inclination estimates and the geomet-
ric means of the precision parameter for one particular combination

I = 70◦, κ = 20 and N = 100. The arithmetic mean of the data shifts
the solutions to shallow inclinations and higher precision parame-
ters. The Kono method gives solutions centred about the true value,
but there is an apparent leakage towards the vertical (I = 90◦) and
lower precision parameters; also, the Kono method has no-solution
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Figure 10. The distribution of 1000 precision parameter estimates (logarithmic scale) for I = 70◦, κ = 20, N = 100.

for seven cases. The McFadden–Reid method has no-solution for
28 data sets. The original McFadden–Reid method gives similar re-
sults as the arithmetic mean, whereas the modified McFadden–Reid
method is noticably better; the mean inclination is less shallow,
and the precision parameter remains the same. The Enkin–Watson

method requires using the marginal likelihood method for all these
data sets, but we use the corresponding Gaussian estimates for the
precision parameter. The Arason–Levi method of this study has a
distribution similar to the Kono and Enkin–Watson results; and for
the six excluded data sets the maximum likelihood is vertical.
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Table 3. Mean of the 1000 estimates shown in Figs 8–10 for the combination
(I = 70◦, κ = 20, N = 100).

Mean Precision
inclination, I (◦) parameter

Fisher (1953) 69.9 20.2
Arithmetic mean 65.4 26.8
Kono (1980) 70.0 20.9
McFadden & Reid (1982)

Original 65.4 25.5
Modified 68.3 25.5

Enkin & Watson (1996)
Marginal likelihood 69.7 (21.6)a

Arason & Levi method of this study 70.1 20.5
aSee text on estimate of precision parameter.

Fig. 11 shows average inclination shallowing versus true inclina-
tion for the various values of the precision parameter, κ . Each panel
has four curves representing precision parameters, κ , of 10, 20, 40
and 100 (least shallowing). Each point was calculated as the average
of 1000 estimates of the mean inclination by the methods for ran-
dom Fisher-distributed data sets where the sample number was fixed
at N = 100. The arithmetic mean and the McFadden–Reid methods
produce the most shallowing. The Arason–Levi method causes the
least shallowing of the mean inclination, and for κ > 40 there is no
significant mean-shallowing for inclinations up to 80◦. Results of
the McFadden–Reid method(s) seem to be similar to the arithmetic
mean. For the McFadden–Reid and Kono estimates ‘no-solution’
results were not included in the mean calculations. It may be some-
what surprising to see an apparent bias in the Fisher-estimates at
90◦. Although the Fisher-estimates are themselves unbiased, arith-
metic mean of one thousand Fisher mean-inclinations for I = 90◦ is
slightly biased (shallow) due to the arithmetic mean bias. In Fig. 12,
we show this effect, where we compare average inclination estimates
of 1000 data sets, where κ = 20 and N = 100. The red data repre-
sent Fisher mean-inclinations of the 1000 data sets using both mean
inclinations and declinations, whereas the blue data show arithmetic
means of the 1000 Fisher mean-inclinations. The shallowing at 90◦

is about 1.6◦.
Fig. 13 shows a comparison of the curves of the inclination-

only methods in Fig. 11 for κ = 20 and N = 100. The largest
inclination bias arises from the original McFadden–Reid method,
which is identical to the arithmetic mean for this range. The methods
of Enkin–Watson, Kono and Arason–Levi have only a very small
inclination bias, and the Arason–Levi method produces the least
bias. For comparison with the other methods, the solutions at the
edges (I = ±90◦) by our method were not included in the means.

We compared the means of I and κ of the inclination-only meth-
ods for the 368 combinations of I , κ and N . For true inclinations
in the range ±75◦ to ±90◦, our method gives results closest to the
true inclination in 79 per cent of the 128 combinations, whereas
Enkin–Watson is closest in 16 per cent and Kono in 5 per cent. For
true inclinations ±60◦ or ±70◦, our method was closest to the true
inclination in 70 per cent of the 64 combinations, Kono 20 per cent,
Enkin–Watson 6 per cent and the modified McFadden–Reid in 5 per
cent of the combinations. For lower inclinations, there is less differ-
ence between the methods. For the mean estimates of the precision
parameters for the 368 combinations, the closest to the true value is
given by the Enkin–Watson method in 77 per cent of cases, whereas
our method is closest in 23 per cent of the combinations.

The magnitude of the inclination bias of the various methods
as a function of the true inclination is summarized in Table 4,

where we combined positive and negative inclinations. For each
value of true inclination there are 16 combinations of κ and N.
For true inclinations of ±60◦, ±50◦ and ±40◦ there are 96 (I ,
κ , N)-combinations. We calculated the arithmetic mean of the
1000 estimates of the mean inclinations. We then found the abso-
lute difference between the true inclination and these 96 averages.
Table 4 shows that for true inclinations of ±40◦ to ±60◦, 48 of the
96 averages, were within about 0.1–0.2◦ of the true mean for all
the inclination-only methods except the arithmetic mean and the
original McFadden–Reid method, where the shallowing bias was
close to 1.3◦. These values should be compared to the apparent bias
for Fisher-statistics, which includes a mixture of random statistical
fluctuations and a component of the arithmetic mean bias for the
1000 averages. For true inclinations up to 75◦, there is almost no
inclination bias for the Arason–Levi method of this study. Even for
steeper inclinations, our method may give reliable results. We also
tried grouping the data sets by θ

√
κ as suggested by Enkin & Watson

(1996). For the three groups θ
√

κ > 400, 200 < θ
√

κ < 400 (or
150 < θ

√
κ < 400 when N > 30) and θ

√
κ < 200 (or θ

√
κ < 150

when N > 30), the Arason–Levi method gives lower inclination
bias than the Enkin–Watson procedures. For these combinations,
the Arason–Levi method has the lowest inclination bias of all the
inclination-only methods.

The relative difficulty in applying the methods of Kono,
Arason–Levi or the Enkin–Watson Gaussian estimates is compa-
rable; they all require a fairly simple iteration process through some
equations. However, the numerical approach of the Enkin–Watson
single-parameter marginal likelihood method is more complicated
and computer intensive. The Arason–Levi method gives much bet-
ter results than the Enkin–Watson Gaussian estimates, and slightly
better results (Fig. 13) than the Kono method and the much more
complicated Enkin–Watson single-parameter marginal likelihood
method.

The new Arason–Levi method accurately calculates the maxi-
mum likelihood estimates of mean inclinations from inclination-
only data. Comparisons of the results with other methods is very
favourable to our new maximum likelihood method. On average,
our method gives estimates of mean inclinations, least biased to
shallow values.

1 0 D I S C U S S I O N

This study shows that the McFadden–Reid method, which is still
widely used, often leads to significant inclination shallowing. The
original method has an apparent error and the resulting mean in-
clinations are almost identical to the arithmetic mean. A modifi-
cation to the method is only somewhat better. In our opinion the
McFadden–Reid method should be abandoned.

For steep and dispersed inclinations, the Kono and McFadden–
Reid methods often do not have a solution. This problem seems
more pronounced for the McFadden–Reid method. Some of these
cases result in a vertical solution by our method.

Enkin & Watson (1996) weighted the likelihood function with a
Bayesian factor. This weighting gives better constraints of the so-
lution for very dispersed and steep inclinations. By using Bayesian
statistics they use the a priori knowledge that shallow inclinations
should be more common than steep ones. This higher weight to
low inclinations will result in shallower mean inclinations than
by unweighted maximum likelihood estimation. Furthermore, they
presented three different approaches depending on the dispersion
and steepness of the data: arithmetic mean, Gaussian estimate and
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Figure 11. The comparison of the inclination-only methods. Each point represents a mean value of 1000 estimates. The ideal method should result in no
inclination shallowing. Identical results are for negative inclinations.

marginal likelihood. Results near their empirically chosen bound-
aries can yield different mean inclinations, depending on the ap-
proach chosen. Enkin & Watson (1996) use too few iterations in
their numerical examples to locate the best solution, which leads

to less accurate results. The Bayesian view is successful in better
constraining the solution and, especially, in estimating the precision
parameter. Our calculations show that their estimates of precision
parameters are often closer to the true value than estimates by the
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Figure 12. Comparison of Fisher and arithmetic mean inclinations. Each
point represents the mean of 1000 inclination-mean estimates. See text.

Figure 13. Comparison of the curves in Fig. 11, concentrating on the varia-
tions up to 3◦ inclination shallowing bias. The two green curves show the esti-
mates of the original and modified McFadden–Reid methods. For this range,
the original McFadden–Reid method (higher green curve) gives identical
results to the arithmetic mean. The blue curve represents the Enkin–Watson
estimates and the brown curve the Kono estimates. The red curve showing
least bias for steep inclinations is due to the Arason–Levi method presented
in this study.

Figure 14. Comparison of the distribution of inclinations for Fisher-
distributed VGPs (blue curves for IGAD of 30◦ and 75◦) and Fisher-
distributed directions (red curves from eq. 2). The area under all the curves
is the same.

Arason–Levi method. However, we think it is important to use
the same self-consistent method for all data sets, rather than using
ad hoc conditions to select between different methods. Also, we con-
sider that it is more important to obtain unbiased estimates of mean
inclinations than unbiased estimates of the precision parameter.

All methods for analysing inclination-only data assume that the
directions are Fisher-distributed. Through the dipole equation and
spherical trigonometry, one can transform paleomagnetic directions
to virtual geomagnetic poles (VGPs) and vice versa. If either of the
distributions (poles or directions) is isotropic the other becomes
oval (e.g. Arason & Levi 1997). Studies have shown that VGPs
from lavas, which record the instant geomagnetic field, are more
isotropic than the observed directions. This may not be true for data
from sediments, where there is more within specimen averaging of
the secular variation.

We are interested in comparing the distributions of inclination-
only data for Fisher-distributed VGPs and Fisher-distributed di-
rections. In Fig. 14, the blue curves show the probability den-
sity of the inclinations for Fisher-distributed VGPs and the red
curves show the same for Fisher-distributed directions, where the

Table 4. Comparisons of the inclination-bias of the methods for various true inclinations.

True inclination

0–30◦ 40–60◦ 70–75◦ 80–85◦ 90◦

Number of (I , κ , N)-combinations 112 96 64 64 32
Fisher (1953) 0.07 0.09 0.18 0.50 3.3

Inclination-only

Arason and Levi method of this study 0.07 0.09 0.29 4.1 9.6
Kono (1980) 0.07 0.09 0.60 4.6 10.2
Enkin & Watson (1996) 0.11 0.19 0.95 4.6 9.9

Gaussian estimate 0.08 0.12 0.63 4.4 10.1
Marginal likelihood 0.07 0.19 0.95 4.6 9.9

McFadden & Reid (1982)
Modified method 0.08 0.16 1.8 6.4 11.7
Original method 0.3 1.3 3.7 7.9 13.0

Arithmetic mean 0.3 1.3 3.5 7.5 12.6

Shallowing bias for the various methods in different ranges of the inclination. The data show
median absolute inclination difference, in degrees, between the true inclination and averages of
1000 estimates for several (I , κ , N)-combinations. Ranges of the true inclination include both
positive and negative values.
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mean inclinations are about 30◦ and 75◦. The distribution of in-
clinations assuming Fisher-distributed directions was obtained us-
ing eq. (2), whereas the inclination distribution assuming Fisher-
distributed VGPs was numerically determined by transforming the
Fisher-distribution through spherical trigonometry and the dipole
equation. The Fisher-distributed VGPs (blue curves) were assumed
to have angular standard deviation, ASDVGP = 12.1◦ (κVGP = 44.8),
observed at latitude 16.1◦N (IGAD = 30.0◦), and ASDVGP = 18.5◦

(κVGP = 19.1), seen at latitude 61.8◦N (IGAD = 75.0◦). The chosen
ASD values are based on a latitude dependent model of Harrison
(2009). For comparison, we show distributions of inclinations (red
curves) assuming Fisher-distributed directions using eq. (2), with
I = 30◦, κ I = 17.2 and I = 75◦, κ I = 48.8. The values for the
precision parameters were chosen so that the height of the peak of
the area normalized red curves were identical to the corresponding
blue curve. Fig. 14 shows that the distributions of inclination-only
data are very similar, independent of whether the poles or the di-
rections are Fisher-distributed. The peak is slightly displaced; this
bias of the mean was quantified by Arason & Levi (1997). Further-
more, there are small but systematic differences in the shape of the
curves. The blue curves are more skewed, with relatively scarce very
high values and values slightly lower than the mean, and relatively
abundant very low values and values slightly higher than the mean.
However, for ordinary sample sizes of inclination-only data, one can
probably not distinguish whether the VGPs or directions are better
represented by a Fisher distribution. Because the distributions are
so very similar, the assumption of Fisher-distributed directions in
all the inclination-only methods is justifiable.

In paleomagnetism, there are many possible sources of directional
errors; for example, compaction-induced inclination shallowing in
sediments, non-vertical coring, tectonic tilting and sample orienta-
tion. Such errors may be comparable to or greater than the correction
to the arithmetic mean by the method of this study. However, one
should always strive to use the best methods available to compensate
for potential errors.

1 1 C O N C LU S I O N S

It can be difficult to evaluate the terms comprising the log-likelihood
function and its derivatives with respect to θ and κ . Previous stud-
ies have made various approximations to the problem, leading to
inaccurate estimates, which are systematically biased to shallow in-
clinations (e.g. Arason 1991; Arason & Levi 1995; Levi & Arason
2006).

We succeeded in analytically cancelling the exponential elements
from the likelihood function, and we can now calculate its value any-
where in the parameter space, for any inclination-only data set, and
with full accuracy. Furthermore, we can now calculate the partial
derivatives of the likelihood function, also with desired accuracy,
and locate the maximum likelihood without the assumptions re-
quired by previous methods. We have developed a simple method
that accurately evaluates the maximum likelihood estimates of the
mean inclination and precision parameter for inclination-only data.

The information to separate the mean inclination from the preci-
sion parameter will be lost for very steep and dispersed data sets.
Although the likelihood function always has a maximum value, for
some dispersed and steep data sets with few samples, the likelihood
function has its highest value on the boundary of the parameter
space, that is I = ±90◦, but having a relatively well-defined dis-
persion. Our simulations indicate that this occurs quite frequently
for certain data sets, and that relatively small perturbations in the

data will drive the maximum to the boundary. We interpret this to
indicate that, for such data sets, the information needed to separate
the mean inclination and the precision parameter is permanently
lost.

The new Arason–Levi method for determining unbiased mean
inclinations from inclination-only data is based on maximum
likelihood estimation. The Arason–Levi method should be pre-
ferred because it is more accurate than the previous methods,
particularly for steep inclinations. It is self-consistent for all data
sets, employing a simple iteration procedure. It is very robust,
and, of the available methods, it gives the least biased estimates
of mean inclinations. Computer program codes for our maxi-
mum likelihood method for inclination-only data, and a conve-
nient web-calculator for the occasional user, can be found at:
http://www.vedur.is/∼arason/paleomag/
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A P P E N D I X A : E VA LUAT I O N
O F T H E F U N C T I O N S

To solve the maximum likelihood problem for inclination-only data,
one needs to be able to accurately calculate several functions for
any combination of κ and θ : 0 ≤ κ and 0◦ ≤ θ ≤ 180◦. This can be
done with a combination of analytical cancellations and a careful
choice of approximations of the functions for certain regions of the
parameters.

A.1 The hyperbolic Bessel functions

We need to evaluate the hyperbolic Bessel functions of zero and
first order, I0(x) and I1(x), but it is sufficient to determine the ratios
I0(x)/ex and I1(x)/I0(x), and these ratios can be calculated more
accurately than the Bessel functions themselves.

The hyperbolic Bessel functions are sometimes called the mod-
ified Bessel function of first kind, and they can not be expressed
as a finite combination of elementary functions. At zero, the func-
tions have the values, I0(0) = 1 and I1(0) = 0, and as x increases
the Bessel functions increase exponentially (Figs A1 and A2). The
Bessel function I0(x) can be expanded as an infinite series (e.g.
Gradshteyn & Ryzhik 1980, eq. 8.447.1, p. 961). Here we are only
interested in positive values of x; we note the relations

I0(−x) = I0(x) and I1(−x) = −I1(x). (A1)

I1(x) is related to the derivative of I0(x) by

I1(x) = I ′
0(x). (A2)

To compute the Bessel function I0(x) and the ratio I1(x)/I0(x), we
use the approximations of Press et al. (1989), which are based on
Olver (1972, eqs 9.8.1–4).

We define the functions P, Q, U and V as

P(x) = p0 + p1t2 + p2t4 + p3t6 + p4t8 + p5t10 + p6t12, (A3)

Q(x) = q0 + q1t−1 + q2t−2 + q3t−3 + q4t−4 + q5t−5

+ q6t−6 + q7t−7 + q8t−8, (A4)

U (x) = x
(
u0 + u1t2 + u2t4 + u3t6 + u4t8 + u5t10 + u6t12

)
,

(A5)

V (x) = v0 + v1t−1 + v2t−2 + v3t−3 + v4t−4 + v5t−5

+ v6t−6 + v7t−7 + v8t−8, (A6)

Figure A1. The hyperbolic Bessel function I0(x) increases exponentially
and becomes numerically difficult to evaluate for high values of x. However,
the ratio I0(x)/ex is easier to handle.
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Figure A2. The hyperbolic Bessel function I1(x) increases exponentially,
similar to I0(x), and becomes numerically difficult to evaluate for high values
of x. However, the ratio I1(x)/I0(x) is easier to handle.

where

t = x/3.75, (A7)

pi = [1, 3.5156229, 3.0899424, 1.2067492, 0.2659732,

0.0360768, 0.0045813], (A8)

qi = [0.39894228, 0.01328592, 0.00225319, −0.00157565,

0.00916281, −0.02057706, 0.02635537,

− 0.01647633, 0.00392377], (A9)

ui = [0.5, 0.87890594, 0.51498869, 0.15084934, 0.02658733,

0.00301532, 0.00032411], (A10)

vi = [0.39894228, −0.03988024, −0.00362018, 0.00163801,

−0.01031555, 0.02282967, −0.02895312,

0.01787654, −0.00420059]. (A11)

We evaluate the Bessel functions for the range 0 ≤ x < 3.75:

I0(x) = P(x) + ε, (A12)

where the error term is |ε| < 1.6 × 10−7 and

I1(x) = U (x) + ε, (A13)

where the error term is |ε| < 0.3 × 10−7.
The Bessel ratio for the range 0 ≤ x < 3.75 is calculated by

I1(x)/I0(x) ≈ U (x)/P(x). (A14)

Figure A3. The functions P(x) (solid) and U(x) (dashed) for the range 0 ≤
x < 3.75. The functions P(x) and U(x) were used to evaluate the hyperbolic
Bessel functions I0(x) = P(x) and I1(x) = U(x) in this range.

Fig. A3 shows the functions P(x) and U(x) [i.e. I0(x) and I1(x)], for
low values of x, 0 < x < 3.75. Both the functions P(x) and U(x)
and their ratio are easily calculated for any value of x in this range
using eqs (A3), (A5), (A7), (A8), (A10) and (A14).

We evaluate the Bessel functions for the range x ≥ 3.75:

I0(x) =
(

ex

√
x

)
(Q(x) + ε), (A15)

where the error term is |ε| < 1.9 × 10−7 and

I1(x) =
(

ex

√
x

)
(V (x) + ε), (A16)

where the error term is |ε| < 2.2 × 10−7.
The Bessel ratio for the range x ≥ 3.75 is calculated by

I1(x)/I0(x) ≈ V (x)/Q(x). (A17)

Fig. A4 shows the functions Q(x) and V (x), for higher values of x,
3.75 < x < 25. Both the functions Q(x) and V (x) and their ratio are
easily calculated for any value of x in this range using eqs (A4), (A6),
(A7), (A9), (A11) and (A17). In calculating the ratio I1(x)/I0(x) by
eq. (A17), the square root and the exponential elements of eqs (A15)
and (A16) are cancelled. The functions Q(x) and V (x) and their ratio
are easily calculated for any value of x ≥ 3.75.

For convenience, we define the Bessel-exponent-free function
B(x)

I0(x)

ex
≈ B(x) = P(x)

ex
for 0 ≤ x < 3.75, (A18)

Figure A4. The functions Q(x) (solid) and V (x) (dashed) for x ≥ 3.75. Both
functions approach (2π )−

1
2 ≈ 0.3989 asymptotically. These were used to

evaluate the hyperbolic Bessel functions.
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Figure A5. The ratios I0(x)/ex (solid) and I1(x)/ex (dashed).

I0(x)

ex
≈ B(x) = Q(x)√

x
for 3.75 ≤ x, (A19)

and the Bessel-ratio function R(x)

I1(x)

I0(x)
≈ R(x) = U (x)

P(x)
for 0 ≤ x < 3.75, (A20)

I1(x)

I0(x)
≈ R(x) = V (x)

Q(x)
for 3.75 ≤ x . (A21)

Fig. A5 shows the ratios I0(x)/ex along with I1(x)/ex, for x in the
range 0 < x < 25. Fig. 4 shows the functions B(x) and R(x) (i.e.
I0(x)/ex and I1(x)/I0(x)). By defining the functions B(x) and R(x) we
have eliminated the exponential elements of the Bessel functions
and are able to calculate, with full accuracy, the essential part of
the Bessel functions and their ratio for any value of x. For x ≥ 0,
these functions take values in the range 0 < B(x) ≤ 1 and 0 ≤
R(x) < 1. In evaluating the Bessel functions and their ratios with
the functions B(x) and R(x), we avoid the exponential elements to
keep full accuracy for all values of x and therefore avoid overflow
problems in our calculations. This same exponential element of
the Bessel function can also be analytically eliminated from the
log-likelihood function.

A.2 The hyperbolic cotangent

The derivative of the log-likelihood function includes a hyperbolic
cotangent term, coth κ . The hyperbolic cotangent can be written as

coth x = ex + e−x

ex − e−x
. (A22)

Fig. A6 shows the hyperbolic cotangent function. Because of over-
flow problems, numerical evaluation by eq. (A22) is problematic for
high and low values of x, so we evaluate the hyperbolic cotangent
by

coth x ≈ 1

x
+ 1

3
x − 1

45
x3 + 2

945
x5 for 0 < x < 0.01, (A23)

coth x = 1 + e−2x

1 − e−2x
for 0.01 ≤ x ≤ 15, (A24)

coth x ≈ 1 for 15 < x . (A25)

The error in using the approximation of eq. (A23) in the range
0.0001 ≤ x ≤ 0.01 is less than 10−13, and in using eq. (A25), less
than 2 × 10−13.

Figure A6. The hyperbolic cotangent function, coth(x). Close to x = 0 it
behaves like 1/x and for x > 3 it approaches 1.

A.3 Evaluation of the log-likelihood function

We evaluate the log-likelihood function h(θ , κ) in three parts

h(θ, κ) = A1 + A2 + A3, (A26)

where

A1 = N ln
[ κ

2 sinh κ

]
, (A27)

A2 =
N∑

i=1

(κ cos θ cos θi + ln[I0(κ sin θ sin θi )]), (A28)

A3 =
N∑

i=1

ln [sin θi ]. (A29)

A.4 The first part of the log-likelihood function

To evaluate A1 of the log-likelihood function h(θ , κ) for any value
0 ≤ κ , we express the hyperbolic sine function as

sinh κ = (eκ − e−κ )/2. (A30)

The hyperbolic sine function and its exponential behaviour is shown
in Fig. A7. Because of its exponential growth and potential overflow
problems, it is difficult to accurately evaluate this function for high
values of κ . Therefore, it is necessary to isolate the exponential
element of the function.

For values of κ in the range, say 1–10, eqs (A27) and (A30)
can be easily evaluated with a calculator or a computer program.
However, when κ approaches zero or high values, there may be
difficulties evaluating the exponential elements (or ln 0). For high
values of κ (e.g. κ > 100), ordinary calculators and programming
languages will overflow or give very inaccurate values for sinh κ

and eκ . However, it is possible to combine the elements in eq. (A27)
to analytically cancel the problematic terms, so the function A1 can
be accurately calculated for any value of κ

A1 = N ln

[
κ

2 × (eκ − e−κ )/2

]
, (A31)

A1 = N [ln(κ) − ln(1 − e−2κ ) − κ]. (A32)

Eq. (A32) can be used to accurately calculate the function A1, at
least in the range 0.01 ≤ κ ≤ 15. For values of κ close to zero, we
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Figure A7. The hyperbolic sine function, sinh(x), grows exponentially and
becomes difficult to accurately evaluate for high values of x. However, the
function sinh(x)/ex is numerically very simple.

expand the second term as a power series resulting in

ln(1 − e−2κ ) ≈ ln(κ) + ln(2)

+ ln

(
1 − κ + 2

3
κ2 − 1

3
κ3 + 2

15
κ4 − 8

45
κ5

)
.

(A33)

The first terms of eqs (A32) and (A33) can be analytically cancelled
for κ approaching zero. The function A1 can be calculated with an
error of less than 10−10 in the range 0 ≤ κ < 0.01 by

A1 ≈ −N ln(2)

− N ln

(
1 − κ + 2

3
κ2 − 1

3
κ3 + 2

15
κ4 − 8

45
κ5

)
− Nκ.

(A34)

This representation allows us to calculate the function at zero:
A1(0) = −N ln(2) ≈ −0.6931 N .

For values of κ > 15, the second term in eq. (A32) becomes
negligible (with an error of less than 10−10) and the function can be
calculated by

A1 ≈ N ln(κ) − Nκ. (A35)

In summary, to retain full accuracy, we calculate the first part of the
log-likelihood function by

A1 ≈ N

[
− ln(2)

− ln

(
1 − κ + 2

3
κ2 − 1

3
κ3 + 2

15
κ4 − 8

45
κ5

)
− κ

]
,

(A36)

for 0 ≤ κ < 0.01

A1 = N [ln(κ) − ln(1 − e−2κ ) − κ] for 0.01 ≤ κ ≤ 15, (A37)

A1 ≈ N [ln(κ) − κ] for 15 < κ. (A38)

The essential elements of the function A1 are shown in Fig. A8, that
is the function x + A1/N . The functions ln(κ) and ln(sinh κ) cancel
at κ = 0, and the function can be calculated with full accuracy for
all 0 ≤ κ .

A.5 The second term of the log-likelihood function

To compute the second term, A2, of the log-likelihood function h(θ ,
κ) for any value 0 ≤ κ and 0◦ ≤ θ ≤ 180◦ and any given data set
of θ i, i = 1, . . . , N , we use the function B(x) in eqs (A18) or (A19),
dependent on the value x = κ sin θ sin θ i:

A2 =
N∑

i=1

(κ cos θ cos θi + ln[exp(κ sin θ sin θi )B(κ sin θ sin θi )]),

(A39)

=
N∑

i=1

(κ cos θ cos θi + κ sin θ sin θi + ln[B(κ sin θ sin θi )]),

(A40)

which can be simplified using the cosine difference formula

cos(x − y) = cos x cos y + sin x sin y (A41)

to yield

A2 =
N∑

i=1

(κ cos(θi − θ ) + ln[B(κ sin θ sin θi )]). (A42)

Eq. (A42) is easily evaluated with full accuracy for all values of κ ,
θ and θ i, using the function B(x) in eq. (A18) or (A19). We note that
A2(θ , κ = 0) = 0 and the log-likelihood function can be evaluated
and becomes independent of θ at the boundary κ = 0.

A.6 The third term of the log-likelihood function

The third term, A3, of the log-likelihood function is constant for any
given data set and should not affect the location of the maximum of
the likelihood function. There is a problem if any of the observed
values is exactly vertical, that is θ i = 0◦ or 180◦ (ln 0). Otherwise
A3 can be directly calculated.
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Figure A8. Essential elements of the function A1(x). Note that ln(x) and
ln(sinh x) cancel each other at x = 0.

A P P E N D I X B : N U M E R I C A L I T E R AT I O N
P RO C E S S

The following list shows the convergence of the iteration process for
the data in Table 1. We start with the initial guess of the arithmetic
mean I = 68.78◦ (θ = 21.22◦), κ = 36.42. For this pair, the value
of the log-likelihood function is h = 3.83.

Iter θ κ Log-likelihood

0 21.22 36.42 3.83
1 18.93 35.59 4.12
2 18.57 34.75 4.129
3 18.44 34.13 4.132
4 18.36 33.68 4.1336
5 18.31 33.36 4.1344
10 18.189 32.66 4.13533
20 18.153 32.467 4.1353855
30 18.15129 32.4554 4.1353857157
40 18.151171 32.45473 4.135385716284
44 18.151166 32.45471 4.1353857162853

After 44 iterations the difference between successive steps was
less than our limit (�θ < 0.000 001◦ and �κ/κ < 0.000 001).
The solution indicates that the maximum likelihood estimate of the
mean inclination is I = 71.85◦ (θ = 18.15◦), which is 3.07◦ steeper
than the arithmetic mean.

Now we find the maximum value on the three edges. First, we
find a solution for I = +90◦, then I = −90◦, and finally calculate
the value of the log-likelihood function at κ = 0.

Iter θ κ Log-likelihood

5 0 12.651665 3.76
5 180 0.520573 −21.04
0 90 0 −16.32

The value of the log-likelihood function on the three edges is
considerably lower than for our solution in the interior.

The highest value of the log-likelihood function is from the first
iteration process, it satisfies our convergence and robustness checks,
and our maximum likelihood solution is I = 71.85◦, κ = 32.45.
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