

Properties of ash-infused hail during the Grímsvötn 2011 eruption and implications for radar detection of volcanic columns

Þórður Arason,

Svava B. Þorláksdóttir, Geirfinnur S. Sigurðsson, Richard F. Yeo and Þorsteinn Þorsteinsson

Veðurstofa Íslands

Icelandic Meteorological Office, Reykjavík, Iceland

EGU2013-4797, European Geosciences Union, General Assembly 2013, Vienna, Austria, 7-12 April 2013

Eyjafjallajökull eruption April 2010

Plume lightning seen from a distance of 72 km Notice the characteristic fibrous anvil shape of the plume top

Photo Þórður Arason 17 April 2010 at 04:47:09

Ash-infused hail on the glacier about 5 km east of the Eyjafjallajökull crater Photo Thor Thordarson 22 April 2010

Hagl-01: Grímsvötn 2011 ash section 3 km from the crater

Photo Þórður Arason 11 June 2011

Occurrence of ash-infused hail at five sites

Site	Distance/dir. from crater (km)	Section thickness (cm)	Hail (%)	Mixed ash/hail (%)
Hagl-01	3.0 / SSW	>300 (190)	34	23
Hagl-02	6.2 / S	109	27	13
Hagl-03	4.2 / WSW	80	0	0
Hagl-04	1.8 / SSW	? (90)	48	0
Hagl-05	1.9 / SSE	45	7	36

Radar detection of ash vs. ash-infused hail

What difference does it make to radar detection if the ash grains are embedded into larger hail-grains?

Bulk properties of ash-infused hail samples

Sample	Mass (g)	Mass ash (%)	Mass gravel (%)	Mass water (%)	Ice (% vol.)	Hail density (kg/m ³)
Hagl-01-a	416	34	3	63	84	1.16
Hagl-01-b	593	31	3	67	86	1.13
Hagl-02-a	519	54	4	42	69	1.40
Hagl-02-b	1262	46	5	49	75	1.30
Hagl-04	445	58	10	32	61	1.53
Hagl-05	920	48	12	40	69	1.39

Ash grain size distribution

Hail size distributions

Hail sizes were estimated from several photos of layers of in-situ hail

Most had diameter of 1-2 mm

Grain size distribution at two sites

	Hagl-01	Hagl-02
Distance		
rom crater	3.0 km	6.2 km
Median D _h /D _a	6.9	4.7
ce-volume	85%	73%
N _a /N _h	50	28
0 _h	1.14	1.33

The Radar Equation

$$\frac{P_r}{P_t} = \left\{ \frac{\pi^3 c \,\tau \,G^2 \varphi \,\theta}{1024 \,\ln 2 \,\lambda^2 \,r^2} \right\} \,|k|^2 N \,D^6$$

$$|k|_{ice}^2 = 0.197, \quad |k|_{ash}^2 = 0.39$$

By assuming (wrongly) that a plume consists of individual fine grained ash particles, when in fact the ash is embedded in larger hail grains, leads to overestimation of ash mass concentration of (C):

HagI-01:
$$C_{calc}/C_{real} = 380$$

HagI-02: $C_{calc}/C_{real} = 120$

Precipitation from the plume

Stokes law:

$$v_s = \frac{(\rho_p - \rho_f)}{18 \,\mu} g D^2$$

$$\rho_{air} \ll \rho_h, \rho_a: \quad \frac{v_h}{v_a} = \frac{\rho_h}{\rho_a} \frac{D_h^2}{D_a^2}$$

By assuming (wrongly) that plume consists of individual fine grained ash particles, when in fact the ash is embedded in larger hail grains, leads to underestimation of ash precipitation rate (R):

HagI-01:
$$R_{calc}/R_{real} = 1/22$$

HagI-02: $R_{calc}/R_{real} = 1/13$

Mass flux

By assuming (wrongly) that plume consists of individual fine grained ash particles, when in fact the ash is embedded in larger hail grains, leads to

- overestimation of mass concentration and
- underestimation of precipitation rate

These effects oppose each other when mass flux is estimated:

HagI-01: $M_{calc}/M_{real} = 17$ HagI-02: $M_{calc}/M_{real} = 9$

Conclusions

- Thick layers of ash-infused hail were observed surrounding the crater of the Grímsvötn May 2011 volcanic eruption
- Analysis of hail-samples indicate that ash grain size was considerably smaller than hail grain size
- Ice content of the hail varied between 60-85% (by vol.)
- Radar reflectivity of ash in a plume depends strongly on whether the grains are separate or concentrated into hail
- If large proportions of ash grains are embedded into hail, then calculations of plume mass concentration and mass flux can be wrong by orders of magnitude