

ATDnet Lightning Data

Þórður Arason

Veðurstofa Íslands Icelandic Meteorological Office, Reykjavík, Iceland

ATDnet Lightning Group, UK Met Office, FitzRoy Road, Exeter, England, 17 March 2017

Flatey

Reykjavík

Surtsey

RECENTIONS

Keflavík

SKYRINGAR/LEGEND

ICELAND

Hekla

Eyjafjallajökull 🔴 🖊 Katla

Holuhraun

JARDFRÆDIKORT AF ÍSLANDI 1:500 000 BERGGRUNNUR tekð samar af ki Jihannessyni og Distjön Samunda

cogetió al Natschreidenstrum Intends GEOLOGICAL MAP OF ICELAND

1:500 000 BEDROCK GEOLOGY compiled by Hadvar Johannesson and Kotsján Saemundaton sublimed by kotande instruktion of Natural History

Bárðarbunga

Grímsvötn

tand prairies

Icelandic Meteorological Office Veðurstofa Íslands

- Government organization National weather service. Founded in 1920; weather obs. since 1840s (1770s).
 130 employees
- Weather Climate Atm. Pollution Seismology – Tectonics – Volcanics – Glaciology – Avalanches – Hydrology
- Natural Hazards: Observations 24-7 Monitoring – Forecasting – Warnings – Research

Systematic Dislocation of some Events

Eyjafjallajökull eruption. Photo Þórður Arason, 17 April 2010 at 16:35 UTC.

Eyjafjallajökull eruption April 2010

Plume lightning seen from a distance of 72 km Notice the characteristic fibrous anvil shape of the plume top

Photo Þórður Arason 17 April 2010 at 04:47:09

ATDnet stations of the UK Met Office

Arason, P., A. J. Bennett & L. E. Burgin (2011), Charge mechanism of volcanic lightning revealed during the 2010 eruption of Eyjafjallajökull, Journal of Geophysical Research, 116, B00C03, doi:10.1029/2011JB008651

Icelandic Met

Office

ATDnet lightning during Eyjafjallajökull April-May 2010

Arason, Bennett & Burgin (2011), J. Geophys. Res., (Fig. 3)

ATDnet lightning during Grímsvötn 21-28 May 2011

Photo Bolli Valgarðsson 21 May 2011 at 19:20

ATDnet Out-Stations

Grímsvötn May 2011 Lightning count per 30 min

Comparison of ATDnet and WWLLN Data

ATDnet station in Iceland Arrival Time Difference Network

Icelandic Met Office

- ATDnet out-station, owned and operated by UK Met Office, was installed at Keflavík upper air radio-sonde station of the Icelandic Meteorological Office in July 2002.
- Detects 11-16 kHz vertical electric field

Technicians from UK Met Office set up an ATD-sferics out-station in Keflavík, SW-Iceland. Photo Þórður Arason 4 July 2002.

ATDnet located lightning from IMO-web on 30 January 2016. http://brunnur.vedur.is/athuganir/eldingar/

WWLLN station in Iceland World Wide Lightning Location Network

- Operated from University of Washington in Seattle, USA
- About 70 stations around the globe, often at universities
- Detects 3-30 kHz vertical electric field
- IMO has acess to data (with one week delay)
- Station installed at IMO headquarters in Reykjavík in 2013 and data has been collected since November 2013

WWLLN antenna at IMO rooftop in Reykjavík. Photo Þórður Arason 9 February 2016.

Station distribution

Data from the ATDnet & WWLLN

Icelandic Met Office

ATDnet lightning data

- Origin time of lightning, resolution 0.1 µs
- Location (lat, lon), resolution 0.001° (100 m)
- Uncertainty estimate in location (km)
- Data retrieved from UK Met Office every 10 min

2015-12-31 16:00:33.6992798	22 64.606 12.928 2.11	G
2015-12-31_16:00:33.8310394	23 64.562 12.743 13.22	G
2015-12-31 16:07:09.4906092	399 64.669 12.988 2.03	G

WWLLN lightning data

- Origin time of lightning, resolution 1 μs
- Location (lat, lon), resolution 0.0001° (10 m)
- Uncertainty estimate in time (ms)
- Data retrieved daily from UW in Seattle

2015-12-31_16:00:33.699179	64.6311	13.0452	20.2	9
2015-12-31_16:07:09.490489	64.6393	13.0528	9.6	6
2015-12-31 16:07:09.490493	64.6915	13.0129	16.8	14

Located lightning 2014-2015 Comparison: Two whole years; 63-67°N, 13-25°W

N = 1246

N = 1559

Time difference between systems when next event is recorded by the other system

Icelandic Met

Office

Time difference between systems when $\Delta t < 1 \text{ ms}$

Number of synchronous events

48%

Relative location of synchronous events ATDnet set at (0, 0)

Icelandic Met

Office

Relative location <50 km

Location uncertainty

10 (III) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII) (IIII

WWLLN uncertainty is given as a time uncertainty. Here the time is multiplied by speed of light to get location uncertainty.

Assuming the given uncertainty is a one standard deviation of a normal distribution, then the relative location difference would look like this.

Calculated probable distribution

Comparison of locations relative locations and calculated distribution

 $st_{-30^{\circ}} = 12.2 \text{ km}; \quad st_{+60^{\circ}} = 6.5 \text{ km}$

- Time difference of systems is about 0.1 ms
- Each system records about half of the lightning recorded by the other system
- No significant mean location bias is beetween the systems (<2 km)
- Location accuracy is usually well below 10 km
- On average the estimated uncertainty of the systems seems to be reliable

Installation of the ATD-Sferics/ATDnet Out-Station in Keflavík, Iceland, July 2002

Keflavík – ATD-sferics station

- Photos by Þórður Arason taken on 4 July 2002 during installation of the Keflavík ATD-sferics / ATDnet station
- Upper-air radio-sonde station of the Icelandic Meteorological Office, at 63°58.098'N, 22°36.811'W, 38 m a.s.l. About 400 m to the West from the N-S runway (02) of the Keflavík International Airport
- Technicians Eric Hibbett & Mark Salkovskis of the UK Met Office installed the station, with a little help from Þórður Arason and Jens Kristinsson of the IMO

Mark Salkovskis and Eric Hibbett by the ground antenna. Photo Þórður Arason 4 July 2002.

Arctic Tern (Kría) in Flatey island, W-Iceland. Photo Þórður Arason, August 2016.