#### 2010-05

mil

# How are we prepared for the next explosive eruption in Iceland?

Sara Barsotti, Talfan Barnie, Þórður Arason, Melissa A. Pfeffer, Björn S. Einarsson

Icelandic Meteorological Office

sara@vedur.is

#### IAVCEI Scientific Assembly

30 January - 3 February 2023 | Rotorua, New Zealand

www.iavcei2023.org





### Background



- Icelandic volcanoes can feature effusive and explosive eruptions
- The last two explosive eruptions (Eyjafjallajökull in 2010 and Grímsvötn in 2011) generated ash clouds which affected large areas and airpaces
- The last three effusive eruptions (Holuhraun in 2014-2015 and Fagradalsfjall in 2021/2022) were characterized by volcanic SO<sub>2</sub> release and air-quality issues on a national scale

### Objective



The IMO (Volcano Observatory in Iceland) requires a forecasting and observation system for anticipating and monitoring:

<u>Position, Timing and Extension</u> of volcanic clouds in the atmosphere and tephra fallout on the ground.

Such information is provided to the

- <u>Civil Protection</u> for decision making and mitigation measures,
- <u>General public</u> for self-assessment and counter measures and
- <u>Aviation stakeholders</u> (which includes airline companies and Air Navigation providers).

#### **Observation system**



It consists of a variety of sensors and instruments:

- 1. Meteorological radar network
- 2. Calibrated cameras network
- 3. Lidar
- 4. Ceilometer network
- 5. Satellite products
- 6. Lightning detector network

### Observing and measuring the plume height: the radar network





• 5 radars in the country

- 3 fixed C-band ★
- 2 mobile X-band  $\bigstar$
- Data streaming each 5 minutes
- Volcanic ash products available



### Observing and measuring the plume height: the calibrated cameras network







- Plume height manually assessed (Barnie et al. 2022, submitted)
- Height corrected based on the wind
- The user can choose between two different met data
- For Hekla, Grímsvötn, Bárðarbunga the view allows to get up to ~30 km

## Estimating the mass flow rate with the VESPA system



ICELANDIC

- The Mass Flow Rate (MFR) is automatically calculated by inverting the plume model PlumeMoM (de' Michieli Vitturi et al. 2015) as well as Mastin's formula (2009)
- The system ingests by default all radar data available for the target volcano
- Additional plume heights (e.g. from calibrated cameras) can be added for the MFR estimate



## Forecasting volcanic ash and gases transport: implementation of a new system

Two dispersal codes are implemented:

<u>CALPUFF</u> code for volcanic gases (Scire, J. et al, 1998) <u>NAME</u> code for tephra and ash (Beckett, F. et al. 2020)

- Ad hoc simulations:
  - The IMO operator can initialize any runs any time by accessing the internal web-page, selecting the numerical tool, the target volcano and inserting the ESP needed to execute the codes.
- Scheduled simulations:
  - It has been <u>fully operational</u> during the last eruption in Fagradalsfjall (2021) when the system has been running constantly (two runs per day) for more than 6 months (Barsotti et al. 2023, Natural Hazards)

### Volcanic ash and gases transport modelling and forecasting



The new forecasting system is accessible by everyone at: dispersion.vedur.is (as well as an EPOS VO-TCS service)

Both "hypothetical scenarios" as well as "real events" can be available



#### Forecasting volcanic ash transport





#### Forecasting volcanic ash transport





#### Forecasting volcanic ash transport

| Askja 15000m<br>UUID<br>Model type<br>Start time<br>Duration<br>Particle size<br>distribution                                                                                                                                                                                                                                                                                              | <b>- hypothetical</b><br>8920164f-f4d1-4abb-8dc3-1827d05e2904<br>NAME<br>Sun Jun 12 2022 12:00:00 GMT+0000 (Greenwich Mean Time)<br>24h<br>Hekla2000 | ne) | *                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|
| <ul> <li>The conversion from density equal to 1000 kg</li> <li>1000 kg/m2 [~ 1 m]</li> <li>1000 kg/m2 [~ 1 m]</li> <li>100 kg/m2 [~ 10 cm</li> <li>10 kg/m2 [~ 1 cm]</li> <li>1 kg/m2 [~ 1 cm]</li> <li>1 kg/m2 [~ 1 cm]</li> <li>0.1 kg/m2</li> <li>1 g/m3</li> <li>0.11 g/m3</li> <li>0.01 g/m3</li> <li>0.004 g/m3</li> <li>0.002 g/m3</li> <li>0.0002 g/m3</li> <li>1000 kg</li> </ul> | tephra ground load (kg/m2) to deposit thickness is done by assuming a d<br>y/m3.                                                                     |     |                        |
| <b>₩ ► ₩</b> 2022                                                                                                                                                                                                                                                                                                                                                                          | 2-06-12T16:00:00.000Z                                                                                                                                |     | t. 05.904 Lng: -11.980 |

#### Forecasting volcanic ash





Possibility to visualize the time series of the forecasted parameters in a specific (pre-defined) location

Lat: 63.060 Lng: -20.089

eland 2019 | © OpenStreetMap contributors

## Timeline for the activation and dissemination of information



- IMO practices all the procedures of responding to an imminent explosive volcanic eruption on a monthly basis with London VAAC and ISAVIA (VOLCICE exercises)
- A timeline of actions can be built by reviewing the performances collected during such trainings (\*)



(\*) Assessed by analyzing the time spent for these specific actions during the exercises performed in 2019-2022

#### Communication with end-users



- All information is published on IMO's web-page
- VONA are <u>accessible</u> online

Leclandic Met Office ICEL ANDI Search string Hydrology About IMC Avalanches Home > Earthquakee > Volcanoee > VONA notification 📕 🜒 Hlusta 🕨 Earthquakee Related topics Instructions on using Earthquakes - all regions VONA messade earthquake page: Volcanoe Bárðarbunga and Holuhrau Volcano id Time Color code Previous color code VONA notifications 2014-2015 - overview 2022-11-09 07:57 373010 Main Icelandic volcano Grímsvöt aree 373060 2022-11-09 07:54 Volcanic hazard Askia aree Yellow View Eviafiallaiökull 2010 - overvier Catalogue of Icelandi Grímsvötn 373010 2022-10-16 16:20 Yellov Yellow View Useful links Volcanoes Grímsvötn 373010 2022-10-10 15:23 Yellow Yellow View FutureVol Tremor measurement Krýsuvík 371030 2022-09-15 15:29 Yellow green View Global Volcano Model Net Strain measurements Fagradalsfial 371032 2022-09-15 15:22 green N/A Road conditio GPS measurements Krýsuvík 371030 2022-08-22 10:52 Yellow Yellow View Earthquake Engineering Articles Grímsvötr 373010 2022-08-09 17:24 green Vellow Research Centre - University Reports and publications 371030 2022-08-03 15:36 Krýsuvík Yellow Orang View Institute of Earth Sciences Conferences 2022-08-03 13:42 Red Krýsuvík 371030 Yellow View Incorporated Research Response to earthquakes Grímsvötr 373010 2022-08-02 16:30 Yellow Yellow View nstitutions for Seismolog Other institution Krýsuvík 371030 2022-08-01 09:41 Yellow Yellow National Earthquake Inform Krýsuvík 371030 2022-07-30 14:04 Yellow Yellow View Preventive response t 2022-06-22 11:12 Krýsuvík 371030 greer Yellow arthquake 371020 2022-06-02 11:49 Revkianes areer Vellow View Revkianes 371020 2022-05-16 09:40 Yellov Yellow View Grímsvötn 373010 2022-01-12 12:04 Yellow View greer Krýsuvík 371030 2022-01-07 14 Yellow View

 Ash dispersal forecasts will be <u>accessible</u> through the dedicated portal as well as integrated to IMO's website



#### In conclusion



- The **technological advancement** in detecting the evolution of a volcanic plume is at the base of an automatic system to rapidly produce reliable forecast
- Regular **practices** are a key element to maintain all these systems in place and guarantee their functionalities in time of crises
- A strong **connection** exists between the key-players and Institutions responsible to respond to a volcanic crises

### Thanks!

### Volcanic ash transport modelling and forecasting



Fig. 5: Four TGSD are available in the current dispersal system. They have been adapted from the ICAO report available at <u>https://earthice.hi.is/sites/earthice.hi.is/files/Pdf\_skjol/total\_grain-</u>size distribution in selected icelandic eruptions 01.pdf.

#### Preset varieties of grain size distributions

